
Math 35: Real analysis

Winter 2018 - Homework 8

keywords: step functions, integration

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete

sentences and label any diagrams. Please show your work; no credit is given for solutions without

work or justi�cation.

Lecture 23

Theorem 8 The set T ([a, b]) = {f : [a, b] → R, f step function} is a subspace of F([a, b]).
This means we have

a) 0 ∈ T ([a, b]) (zero function in T ([a, b]))

b) If f, g ∈ T ([a, b]) then f + g ∈ T ([a, b]).

c) If c ∈ R and f ∈ T ([a, b]) then c · f ∈ T ([a, b]).

proof a) Clearly, for any partition P the function O : [a, b] → R, x 7→ O(x) = 0 is a step

function. Hence the function O is in T ([a, b]).

b) Let f, g ∈ T ([a, b]) be two step functions, such that f is a step function with partition

P1 = {(x1k)k=0,..,n} and g is a step function with partition P2 = {(x2i )i=0,..,m}.
This means that for all k ∈ {0, 1, . . . , n− 1} and i ∈ {0, 1, . . . ,m− 1}

f(x) = ck for all x ∈ (x1k, x
1
k+1) and g(x) = di for all x ∈ (x2i , x

2
i+1)

By Lecture 23, Lemma 7 there is a common re�nement P = {t0, t1, . . . , tl}, such that P1 ⊂ P
and P2 ⊂ P . Then for each subinterval (tj , tj+1) we know that

(tj , tj+1) ⊂ (x1k, x
1
k+1) for some k and (tj , tj+1) ⊂ (x2i , x

2
i+1) for some i. Hence

(f + g)(x) = ck + di for all x ∈ (tj , tj+1).

This means that f + g is a step function for the partition P . Hence f + g ∈ T ([a, b]).

c) Let c ∈ R be a constant. If f ∈ T ([a, b]) is a step function with partition P1 = {(x1k)k=0,..,n},
then

f(x) = ck for all x ∈ (x1k, x
1
k+1) ⇒ (c · f)(x) = c · f(x) = c · ck for all x ∈ (x1k, x

1
k+1).

Hence c · f is a step function for the partition P1 and c · f ∈ T ([a, b]).
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Exercise 10 For f, g ∈ T ([a, b] show that

a) f · g b) |f |p for p ∈ R+ c) min{f, g} and max{f, g}

are step functions and therefore integrable.

proof a),c) We proceed as in the proof of Theorem 8 b):

Let f, g ∈ T ([a, b]) be two step functions, such that f is a step function with partition

P1 = {(x1k)k=0,..,n} and g is a step function with partition P2 = {(x2i )i=0,..,m}.
This means that for all k ∈ {0, 1, . . . , n− 1} and i ∈ {0, 1, . . . ,m− 1}

f(x) = ck for all x ∈ (x1k, x
1
k+1) and g(x) = di for all x ∈ (x2i , x

2
i+1)

By Lecture 23, Lemma 7 there is a common re�nement P = {t0, t1, . . . , tl}, such that P1 ⊂ P
and P2 ⊂ P . Then for each subinterval (tj , tj+1) we know that

(tj , tj+1) ⊂ (x1k, x
1
k+1) for some k and (tj , tj+1) ⊂ (x2i , x

2
i+1) for some i.

As both f and g are constant on (tj , tj+1) we have for all x ∈ (tj , tj+1)

(f · g)(x) = ck · di , min{f(x), g(x)} = min{ck, di} and max{f(x), g(x)} = max{ck, di}.

This means that f · g,min{f, g} and max{f, g} are step function for the partition P .

b) This follows in the same way as in the proof of Theorem 8 c). If f ∈ T ([a, b] is a step function

for the partition P1 then |f |p is also a step function for the partition P1. Hence |f |p ∈ T ([a, b]).

Chapter 5.2

exercise 19 Prove that the function f : [0, 1]→ R de�ned by

f(x) =

{
1
0

if
x = 1

n for some n ∈ N
x 6∈ { 1n , n ∈ N}.

is integrable on [0, 1].

Solution: By Chapter 5.2, Theorem 6 it is su�cient to �nd a sequence of step functions

(TUn )n and (TL,n)n, such that

TL,n ≤ f ≤ TUn on [a, b] and lim
n→∞

∫ 1

0
TUn − TL,n = 0.
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The subintervals of a partition P are open in the de�nition of the Darboux upper and lower

sums (see Chapter 5.2, Def. 1) and we take the sup and inf of f on these open intervals. By

choosing a suitable partition P it is therefore su�cient that

TL,n ≤ f ≤ TUn on [a, b]\S where #S = N ∈ N .

Hence the inequality must be true except for a �nite number of points. Therefore we can set

TL,n(x) = TL(x) = 0 for all x ∈ [0, 1] and

TUn (x) =

{
0
1

if
x ∈

(
1
n , 1
)

x ∈
(
0, 1n

)
.

This way we obtain∫ 1

0
TUn − TL,n =

∫ 1

0
TUn =

1

n
. Hence lim

n→∞

∫ 1

0
TUn − TL,n = lim

n→∞

1

n
= 0.

This means that the integral
∫ 1
0 f exists and

∫ 1
0 f = 0.

Chapter 5.3

exercise 25 Show that the derivative of the function f : [−1, 1]→ R given by

f(x) =

{
x2 · sin

(
1
x2

)
0

if
x 6= 0
x = 0.

(see below)

is not integrable.

Figure 1: Plot of f(x) (black) and the upper bound g(x) = x2 (red) and lower bound h(x) = −x2
(blue) for x ∈ [−0.5, 0.5].
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Solution: For the derivative we obtain

f ′(x) =

{
2x sin

(
1
x2

)
− 2

x cos
(

1
x2

)
0

if
x 6= 0
x = 0.

(see below)

Here the �rst part follows from the product and chain rule and the second by using the limit

de�nition of the derivative.

Figure 2: Plot of f ′(x) (black) and the upper bound g(x) = 2(|x| + 1
|x|) (red) and lower bound

h(x) = −2(|x|+ 1
|x|) (blue) for x ∈ [−0.2, 0.2].

Consider the sequences (xn)n∈N where

xn =
1√
2πn

hence f ′(xn) = 2xn sin(2πn)︸ ︷︷ ︸
=0

−2
√
2πn · cos(2πn)︸ ︷︷ ︸

=1

= −2
√
2πn.

We note that

lim
n→∞

xn = 0 but lim
n→∞

f ′(xn) = −∞. (*)

Now we could argue that our function f ′ is unbounded on [−1, 1] and the integral is only de�ned

for bounded functions. Therefore f ′ is not integrable. This answer is correct.

However, we can also take a closer look and see that the lower Darboux integral does not exist:

We know that by Lecture 25, Theorem 12 f is integrable on [−1, 1] if and only if it is

integrable on [−1, 0] and [0, 1].

Consider the interval [0, 1]. Let P be a partition of [0, 1]. Then the �rst subinterval de�ned

by P is (0, ε) for some ε > 0. It is easy to see that f ′ is bounded from above by a constant M(ε)
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on [ε, 1]. Hence for the lower bound fL we obtain∫ 1

0
fL ≤ (1− ε) ·M(ε) + inf{f(x), x ∈ (0, ε)}︸ ︷︷ ︸

=−∞

·ε

Hence for any partition P the integral
∫ 1
0 fL,P =

∫ 1
0 fL does not exist. This implies that also the

lower Darboux integral
∫ 1
0 f does not exist.

exercise 30 Use Integration by substitution to show that for any b ∈ (0, 1)∫ b

0

x3√
1− x2

dx =

∫ arcsin(b)

0
sin3(x) dx =

∫ arcsin(b)

arcsin(0)
sin3(x) dx.

Solution: We recall the theorem:

Theorem (Integration by substitution) Let g : [a, b] → [c, d] be di�erentiable on [a, b]
and g′ continuous on [a, b]. Let f : [c, d]→ R be a continuous function. Then∫ b

a
f(g(x)) · g′(x) dx =

∫ g(b)

g(a)
f(t) dt.

The equation follows with g(x) = arcsin(x) and f(x) = sin3(x). We have that

g′(x) = arcsin′(x) =
1√

1− x2
and f(g(x)) = sin(arcsin(x))3 = x3.

Furthermore g is di�erentiable on [0, b] the derivative is continuous on [a, b]. By the de�nition of

arcsin : [−1, 1)→ [−π
2 ,

π
2 ) we know that f = sin3 is continuous on [−π

2 ,
π
2 ).

Hence the conditions of the theorem are ful�lled.


