Math 35: Real analysis
Winter 2018 - Homework 8

keywords: step functions, integration

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete
sentences and label any diagrams. Please show your work; no credit is given for solutions without
work or justification.

Lecture 23

Theorem 8 The set T'([a,b]) = {f : [a,b] — R, f step function} is a subspace of F([a,d]).
This means we have

a) 0 € T([a,b]) (zero function in T'([a,b]))
b) If f,g € T([a,b]) then f+ g € T([a,b]).
c) If ce Rand f € T([a,b]) then c- f € T([a,b]).

proof a) Clearly, for any partition P the function O : [a,b] — R,z — O(z) = 0 is a step
function. Hence the function O is in T'([a, b)).

b) Let f,g € T(|a,b]) be two step functions, such that f is a step function with partition
P = {(;v,lc)kzon} and g is a step function with partition P> = {(23)i=0,...m}-
This means that for all k € {0,1,...,n—1} and ¢ € {0,1,...,m — 1}

f(@)=c, forall x¢€ (v},24,,) and g(z)=d; foral =€ (27,274)

By Lecture 23, Lemma 7 there is a common refinement P = {t¢,t1,...,%}, such that P, C P
and P» C P. Then for each subinterval (¢;,%;41) we know that

(tj,tj+1) C (z},24y1) forsomek  and  (t,tj41) C (2?,27,,) for some i. Hence
(f +9)(=) = cp+d; forall ze (tj,tj41).

This means that f + g is a step function for the partition P. Hence f + g € T'([a,b]).

c) Let ¢ € R be a constant. If f € T([a,b]) is a step function with partition P; = {(z})k=0..n},
then

f(x)=c¢; forall ze€ (:U,lﬁ,ac,{:H) = (c-flle)=c-f(z)=c-¢ forall ze€ (xi,xi+1).

Hence ¢ - f is a step function for the partition P, and ¢- f € T'([a, b]).
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Exercise 10 For f,g € T([a,b] show that

a) f-g b) |[f]P for pe R" ¢) min{f, ¢} and max{f, g}

are step functions and therefore integrable.
proof a),c) We proceed as in the proof of Theorem 8 b):

Let f,g € T([a,b]) be two step functions, such that f is a step function with partition
Py = {(21)k=0,.n} and g is a step function with partition Py = {(22)i=0,.m}-
This means that for all k € {0,1,...,n— 1} and i € {0,1,...,m — 1}

f(@)=c, forall x¢€ (v},24,,) and g(z)=d; foral =€ (27,274)

By Lecture 23, Lemma 7 there is a common refinement P = {t¢,t1,...,%}, such that P, C P
and P» C P. Then for each subinterval (¢;,%;41) we know that

(tj,tj+1) C (z},24y1) forsomek and  (t,tj41) C (z7,27,) for some i.
As both f and g are constant on (t;,t;41) we have for all x € (¢;,t;41)
(f-9)(x)=ck-d;i , min{f(x),g9(x)} = min{cg,d;} and max{f(x),g(x)} = max{ck,d;}.

This means that f - g, min{f, g} and max{f, g} are step function for the partition P.

b) This follows in the same way as in the proof of Theorem 8 c). If f € T'([a, b] is a step function

for the partition P; then |f|P is also a step function for the partition P;. Hence |f|P € T'([a, b]).
Chapter 5.2

exercise 19 Prove that the function f : [0,1] — R defined by

1 . x:% for some n € IN

fe) = { 0 if z&{ineNN}
is integrable on [0, 1].

Solution: By Chapter 5.2, Theorem 6 it is sufficient to find a sequence of step functions
(TY),, and (T}, »)n, such that

1
Trn < f<TY onla,b and lim TV —Tp, =0.

n—o0 0
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The subintervals of a partition P are open in the definition of the Darboux upper and lower
sums (see Chapter 5.2, Def. 1) and we take the sup and inf of f on these open intervals. By
choosing a suitable partition P it is therefore sufficient that

Trn < f<TY on [a,b]\S where #S=NcN.

Hence the inequality must be true except for a finite number of points. Therefore we can set
T n(x) =Tp(x) =0 for all z € [0,1] and

0 .. ze€ (l 1)
TY (2) = { if n’
" 1 T € (0, %)
This way we obtain
1 1 1 1 1
/ TV —Tp, :/ TV = =, Hence lim [ TV —Tp,= lim — =0.
0 0 n n—oo [q n—oo n

This means that the integral fol f exists and fol f=0.

Chapter 5.3

exercise 25 Show that the derivative of the function f: [—1,1] — R given by

f(z) = { 32 ‘sin (9712) if i 7: 8 (see below)

is not integrable.

Figure 1: Plot of f(x) (black) and the upper bound g(z) = 22 (red) and lower bound h(z) = —z?
(blue) for z € [—0.5,0.5].
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Solution: For the derivative we obtain

n(Ll) -2 1
f(z) = { gas sin (37) — £ cos (32) if z zé 8 (see below)

Here the first part follows from the product and chain rule and the second by using the limit
definition of the derivative.

-0.2 0.2

Figure 2: Plot of f’(x) (black) and the upper bound g(z) = 2(|z| + ﬁ) (red) and lower bound
h(z) = —=2(|z| + =) (blue) for = € [—0.2,0.2].

||

Consider the sequences (z,)nen Where

1

Ty = hence f'(z,) = 2x,sin(27n)—2v2mn - cos(2mn) = —2v27n.
\V2mn —— ——
-0 =1
We note that
lim z, =0 but lim f'(x,)=—occ. (¥)

Now we could argue that our function f’ is unbounded on [—1, 1] and the integral is only defined
for bounded functions. Therefore f’ is not integrable. This answer is correct.

However, we can also take a closer look and see that the lower Darboux integral does not exist:

We know that by Lecture 25, Theorem 12 f is integrable on [—1,1] if and only if it is
integrable on [—1,0] and [0, 1].

Counsider the interval [0,1]. Let P be a partition of [0, 1]. Then the first subinterval defined
by P is (0,¢€) for some € > 0. It is easy to see that f’ is bounded from above by a constant M ()
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[e, 1]. Hence for the lower bound f;, we obtain

1
/0 fo<(1—¢€)-M(e) +inf{f(x),z € (0,€)} €

=—00
Hence for any partition P the integral fol fop= fol fr does not exist. This implies that also the

lower Darboux integral fol f does not exist.

arcsin(b)
sin®(z) dz.

b 3 arcsin(b)
/ L dp= sin®(z) do = /
0 1—a? 0 arcsin(0)

exercise 30 Use Integration by substitution to show that for any b € (0,1)

Solution: We recall the theorem:

Theorem (Integration by substitution) Let ¢ : [a,b] — [c,d] be differentiable on [a,b]

and ¢’ continuous on [a,b]. Let f : [c,d] = R be a continuous function. Then
9(b)

b
) - ¢ (2)dz = dt.
/a f(a(@)) - ¢(2) / L

! and f(g(z)) = sin(arcsin(z))® = 3.

'(z) = arcsin’(z) = —=
g'(z) @)= 77—
b]. By the definition of
is continuous on [—7,

Furthermore g is differentiable on [0, b] the derivative is continuous on [a
) we know that f = sin? ).

The equation follows with g(z) = arcsin(x) and f(x) = sin®(x). We have that

B

_T T

arcsin : [-1,1) = [-3, 5
Hence the conditions of the theorem are fulfilled.




