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Lecture 14
Chapter 2.4 - Subsequences

Outline: Every sequence of real numbers has a monotone subsequence. This implies that
every bounded sequence has a convergent subsequence.

Definition 1 (Subsequence) Let (ay,), be a sequence and (ky,), C IN be a strictly increasing
sequence of natural numbers. Then the sequence (ag,, ), is called a subsequence of (ay,)s,.

Idea: This means that a subsequence can skip values of the original sequence (ay),, but can
never repeat a value of (a)n.

Example of (k;,)n:

Example: Let (a,), be the sequence given by a,, := n—lg and (k). the sequence given by
kn :=2n+ 1. Write down the first six elements of (ay,),, the first four elements of (k,), and the
first four elements of (ag, )n. Does (ax, ), converge? What is the limit?
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Theorem 2 Let (ay), be a sequence. Then
a) If (an)n converges to a then every subsequence of (ay,), converges to a.
b) If (an)n has two subsequence that converge to different limits, then (a, ), does not converge.

proof: a) By the e-criterion for convergence we have: For all € > 0 there is N = N(¢) € IN, such
that
lap, —al <e forall n>N (*)

Let (ag, )n be a subsequence. As (ky), € IN is a strictly increasing sequence we know that
ki <ko<ks<...<k,<...
Especially k,4+1 > k, + 1 as it is a sequence of natural numbers. Therefore we must have that
k,>n forall neIN.
Hence as k, > n by (*) we also have that
lak, —al <e forall n>N (*)

Therefore the subsequence converges to a.

b) Idea: We show that in this case (a,), can not be a Cauchy sequence, therefore it can not
converge.

Figure: Sketch the sequence (2-(—1)"),, and two subsequences that converge to different limits.

Let (ag, )n and (ay,)n be two subsequences of (ay,)n, such that

lim ap, =a and lim a;, =b.
n—o0 n—oo

Then these two points have a certain distance |b — a|. Take e = |bzal. We know that there is [Ny

and Ns in IN, such that

lak, —a|l <e forall n>N; and |a;, —a|<e forall m > Ny
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Hence for all n,m > N = max{Ny, No} we have that

|b—al
2

lak, — ay,,| >

Hence for N > max{ky,lx} there are always pairs of terms in (a,), whose distance is greater
than ‘b;za‘. This means that (a,), is not a Cauchy sequence and therefore does not converge.

Theorem 3 Every sequence (a,), has a monotone subsequence.

cos(n)

Example: Sketch the sequence (
find a decreasing subsequence?

)n and identify an increasing subsequence. Can you also

proof: Idea: We try to construct an increasing subsequence. If our construction fails we
show that there is a decreasing subsequence.
We let S be the set of integers n € IN, such that a,, is a lower bound for {a,, ant1,...} i.e.

ap <ap forall k>n+1

Example: From your previous sketch identify the first elements in .S for the sequence (%(”))n
and mark the corresponding terms of the sequence.

If S is infinite, i.e. S = {k1, ko, ks,...} then the subsequence (ay, ) is a strictly increasing
sequence by the definition of S. Hence we have found an increasing subsequence.
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If S is finite, then there is N € IN, such that N is larger than any element in S.
Using this fact we can construct a decreasing subsequence in the following way:
Set l; = N As ay is not a lower bound for the set {an,an1,...}, there is lo > Iy, such that

aN = aj; > Q.

Again, as N <y € S, a;, it not a lower bound for the following elements of (a,),. Hence there
is I3, such that
aN = ap; > ap, > Qg

Continuing this way we find a strictly decreasing subsequence (ay, )n.
In any case we can find a monotone sequence, hence our statement is true. O

Theorem 4 (Bolzano-Weierstrass) Every bounded sequence (a,), has a converging sub-
sequence.




