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Lecture 23

Chapter 5 - Integration

Chapter 5.1 - Integration for step functions

Plan: 1.) We de�ne integration �rst for step functions (' area).
2.) We say that a function f is integrable if it can be "approximated" by step functions.

De�nition 1 (Partitions) A partition P of an interval [a, b] is a �nite sequence of points
P = {(xk)k=0,..,n}, such that

a = x0 < x1 < x2 < . . . < xn−1 < xn = b.

We call an interval (xk, xk+1) a subinterval of the partition P . We call the width wP of the
largest subinterval

wP = ‖P‖ = max{|xk+1 − xk|, where k ∈ {0, 1, 2, . . . , n− 1}} the mesh or norm of P.

If for two partitions P1, P2 of [a, b] we have that P1 ⊂ P2. Then we call P2 a re�nement of P1.

De�ntion 2 (Step functions) A function f : [a, b]→ R is called a step function if there
is a partition P = {(xk)k=0,..,n} of [a, b], such that f is constant on each subinterval (xk, xk+1)
of the partition P . We denote by T ([a, b]) the set of all step functions on the interval [a, b].

Example 3: On the interval [0, 10] sketch a partition P1, a re�nement P2 and a step func-
tion f for P1. Then estimate wP1 . Is f also a step function for P2?
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Note 4: If P = {(xk)k=0,..,n} is a partition of [a, b], then we are not interested in the values
of the step function f on the points (xk)k=0,..,n of the partition. This is because for integration
it does not matter which values the the function takes on this �nite number of points.

Note 5: Let [a, b] an interval and f : [a, b] → R be a step function with its partition P1.
If f is not constant on an open subinterval (xk, xk+1) of another partition P2 = {(xk)k=0,..,n}.
Then f is not a step function for P2.
We can also say that P2 is not a valid or admissible partition for f .

Example: Sketch a step function f on the interval [0, 5] with an admissible partion P1 and
a non-admissible partion P2.

De�ntion 6 (Integration for step functions) Let f ∈ T ([a, b]) be a step function on [a, b]
with respect to the partition P = {(xk)k=0,..,n}, i.e.

a = x0 < x1 < x2 < . . . < xn−1 < xn = b.

Suppose that for k ∈ {0, 1, . . . , n− 1} we have

f(x) = ck for all x ∈ (xk, xk+1) or f(x)
∣∣
x∈(xk,xk+1)

= ck.

Then we de�ne the integral of f (' area) on the interval [a, b] by∫
P
f(x) dx =

∫ b

a
f(x) dx :=

n−1∑
k=0

ck · (xk+1 − xk) =

n−1∑
k=0

ck ·∆xk, where ∆xk = (xk+1 − xk).

Example: For your step function from Example 3 estimate the integral
∫ 10
0 f(x) dx.
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It remains to show that the integral is well-de�ned. This means that the integral is inde-
pendent of the chosen admissible partition for f . To show this we �rst prove the following lemma.

Lemma 7 Let [a, b] be an interval and P1 and P2 be two partions of [a, b]. Then there is a
common re�nement P of P1 and P2, i.e. P1 ⊂ P and P2 ⊂ P .

Proof Idea: We take the union P = P1 ∪ P2. Then clearly for P1 = {(x1k)k=0,..,n} and
P2 = {(x2k)k=0,..,m} we have after (if necessary) eliminating multiple occurences and reorder-
ing

P = {t0, t1, . . . , tl} = {x10, x11, . . . , x1n} ∪ {x20, x21, . . . , x2m}
is a partition of [a, b], such that P1 ⊂ P and P2 ⊂ P .

proof (Integration for step functions is well-de�ned) Let f : [a, b]→ R be a step function
and P1 = {(xk)k=0,..,n} be a partition, such that for k ∈ {0, 1, . . . , n− 1} we have

f(x) = ck for all x ∈ (xk, xk+1).

Idea: If the statement is true for re�nements then we can use Lemma 7 to conclude that the
value is the same for any admissible partition.

1.) Let P = {(tk)k=0,..,m} be a re�nement of P1 then∫
P1

f(x) dx =
n−1∑
k=0

ck · (xk+1 − xk) and

∫
P
f(x) dx =

m−1∑
l=0

c′l · (tl+1 − tl)

But as P1 ⊂ P we know we know that for all points of P between xk and xk+1 i.e xk = ti <
ti+1 < . . . < ti+b = xk+1: f(x) = ck, therefore

ck · (xk+1 − xk) =

b−1∑
l=0

ck · (ti+l+1 − ti+l) = ck · (xk+1 − xk).

As this is true for any pair of points (xk, xk+1), we have that∫
P1

f(x) dx =

∫
P
f(x) dx

Hence the integral is the same for a partition and its re�nement.

2.) If P1 and P2 are two partitions for f then by Lemma 7 there is always a common re-
�nement P . Hence ∫

P1

f(x) dx =

∫
P
f(x) dx =

∫
P2

f(x) dx

and our statement is true for any (admissible) partition of f .
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You have seen in Linear Algebra that the set of functions F([a, b]) = {f : [a, b] → R} is a
vector space with addition and scalar multiplication. We also have

Theorem 8 The set T ([a, b]) = {f : [a, b] → R, f step function} is a subspace of F([a, b]).
This means we have

a) 0 ∈ T ([a, b]) (zero function in T ([a, b]))

b) If f, g ∈ T ([a, b]) then f + g ∈ T ([a, b]).

c) If c ∈ R and f ∈ T ([a, b]) then c · f ∈ T ([a, b]).

proof HW 8. Hint: Use Lemma 7.

Using Lemma 7 we can also show:

Theorem 9 (Linearity and monotonicity of the integral)

Let f, g : [a, b]→ R be two step functions then

a)
∫ b
a f(x) + g(x) dx =

∫ b
a f(x) dx +

∫ b
a g(x) dx.

b) For c ∈ R we have that
∫ b
a c · f(x) dx = c ·

∫ b
a f(x) dx.

c) If f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x) dx ≤

∫ b
a g(x) dx.

Note: This means that
∫

: T ([a, b])→ R is a linear function between vector spaces.

proof of Theorem 9 Idea: This follows from the corresponding rules for sums and Lemma 7.
Example: b) with the notation for f as in De�ntion 1 we have∫ b

a
c · f(x) dx =

n−1∑
k=0

c · f(x)︸︷︷︸
=ck

∣∣
x∈(xk,xk+1)

· (xk+1 − xk) = c ·
n−1∑
k=0

ck · (xk+1 − xk) = c ·
∫ b

a
f(x) dx.

Exercise 10 For f, g ∈ T ([a, b] show that

a) f · g b) |f |p for p ∈ R+ c) min{f, g} and max{f, g}

are step functions and therefore integrable.

proof HW 8.
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Chapter 5.2 - Darboux integral for functions

Aim: We say that a function f is integrable if it can be "approximated" by step functions.

De�ntion 1 (upper and lower Darboux sums) Let f : [a, b] → R be a bounded function
and P = {(xk)k=0,..,n} be a partition of [a, b],i.e.

a = x0 < x1 < x2 < . . . < xn−1 < xn = b.

We de�ne two step functions fU , fL : [a, b]→ R associated to f and P in the following way

Mk = sup{f(x), x ∈ (xk, xk+1)} and fU (x) = Mk for all x ∈ (xk, xk+1)

mk = inf{f(x), x ∈ (xk, xk+1)} and fL(x) = mk for all x ∈ (xk, xk+1).

If the partition P is important we will write fU
P for fU and fL,P for fL.

Finally the Darboux sums of f with respect to P are the integrals∫ U

P
f =

∫ b

a
fU (x) dx (upper sum) and

∫
L,P

f =

∫ b

a
fL(x) dx (lower sum)

Example Sketch a continuous function f in the interval [0, 10]. Using a partition P with four

points, sketch fU and fL and estimate the integrals
∫ U
P f and

∫
L,P f .

Using this approximation with step functions we can try to �nd the "best approximating"
fU and fL by varying and re�ning the partition.

De�nition 2 (Upper and lower Darboux integral) Let f : [a, b] → R be a bounded
function. The Darboux integrals of f are∫ b

a
f(x) dx = inf{

∫ U

P
f =

∫ b

a
fU
P (x) dx, P partition of [a, b]} (upper integral)∫ b

a
f(x) dx = sup{

∫
L,P

f =

∫ b

a
fL,P (x), P partition of [a, b]} (lower integral) .
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Finally we say that a function f is integrable if the upper and lower Darboux integral co-
incide. This means that the function can be approximated by greater and lower step functions
such that the corresponding integrals exists and are equal.

De�ntion 3 (integrable functions) Let f : [a, b] → R be a bounded function. Then f is
(Darboux) integrable on the interval [a, b] if∫ b

a
f(x) dx = L =

∫ b

a
f(x) dx.

In this case we write L =
∫ b
a f(x) dx.

Note: For any partition P of [a, b] we have that∫ b

a
fL(x) dx ≤

∫ b

a
fU (x) dx hence

∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx.

Example 4: Every step function f ∈ T ([a, b]) is Darboux integrable.

proof Let f be a step function with partition P . Then

fL,P = f = fU
P hence

∫ b

a
fL(x) dx =

∫ b

a
fU
P (x) dx. (*)

By De�ntion 2 we have that∫ b

a
fL,P (x) dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
fU
P (x).

Therefore by (*) we have equality, i.e
∫ b
a f(x) dx =

∫ b
a f(x) =

∫ b
a f(x) dx

Example 5: Let f : [−1, 1]→ R be the function, such that

f(x) =

{
0
1

if
x ∈ R \Q
x ∈ Q .

Then f is not integrable on [−1, 1].


