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Lecture 24

Theorem 6 A bounded function f : [a,b] — R is integrable if and only if for every ¢ > 0
there are step functions TV =TV, Ty, . = Ty, € T([a, b]), such that

b b
T, < f<TY and / TY(z) dz —/ Tr(x)dx <e.
a a
Especially for the given step functions we have by the definition of the integral
b b b b
|/ 7Y () dz — / f(z)dzx| <e and |/ f(z)dx —/ Tr(z)dx| < e.
a a a a
proof This follows directly from the definition.

Theorem 7 (continuous functions are integrable) Let f : [a,b] — R be a continuous
function. Then f is integrable on the interval [a, b].

Figure Example for Theorem 7. Take an equidistant partition.

proof Idea: A continuous function on [a, b] is uniformly continuous. The idea is to use The-
orem 6 and construct explicit step functions that appproximate f.

Fix € > 0. By Lecture 19, Theorem 4 we know that f is uniformly continuous. Hence
for the given € there is d(€) = d, such that for all z,Z € [a, D]
[z — 2] <6 =|f(z) - f(Z] <e (%)

We now construct our step functions:
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1.) Partition P: We first choose a partition. In this case it is practical to choose an
equidistant partition P = {(tx)r=0,.n}

b— b— b—
For ¢ < 0, set tpy=a+k- Ta. Hence Aty =||P| = < (**)
n
2.) Upper and lower step functions fU and f: We set
M, = max{f(a:),x € [tk,tk+1]} and fU(:L‘) =M, forall xe¢€ (tlmtk—i-l)
my = min{f(z),x € [ty,tkr1]} and fr(x)=my forall =z € (t, try1).

By the Extreme value theorem we know that
My, = f(&) and my = f(§)  for some &, &k € [ty trr1] hence by (*),(*¥)

G-Gl<2%<s = fE) — fE)] = My —my <

n
Clearly for the step functions we have f;, < f < fU. For the difference of the integrals we get

b b n—1 n—1 n—1
/ fU(a:)dx—/ fole) =D M- Aty = my - Aty =Y (M, —my) - Aty <e-(b—a).
a a k=0 k=0 k=0 N oa
<e(x),(xx) =232
As e was chosen arbitrarily this is true for any e. Hence f is integrable by Theorem 6. O

Theorem 8 (Linearity and monotonicity of the integral for functions)
Let f,g: [a,b] = R be two integrable functions then

a) f;’ f(x)+ g(z) doe = f; f(x) dz + fabg(m) d.
b) For ¢ € R we have that ffc- f(z) dr=c- f; f(z) dz.

¢) If f(z) < g(x) for all x € [a,b], then ff f(z) de < ffg(a:) dx.

proof Idea: This follows from the corresponding theorem for step functions Lecture 23, The-
orem 9 and the fact that any integrable function can be "approximated" by step functions.

Example: a) By Theorem 6 we know that for fixed € > 0 there exist step functions
er = va fL,e - fL)gg = nggL,e =JL € T([avb])v SatiSfying

b b
fo<f<fY and gr<g<gY sth / fY(x)—fr(z)de < g and / ¥ (z)—gr(z) dx < g

Hence

b
frtor<f+g<fU+g” and / (fY(2) = fr(2)) = (9" (2) — gr(2)) dz < e.

As € was chosen arbitrarily this means that f + g is integrable and part a) holds.
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Example: Calculate fol x? dx using the approach from Theorem 7 by dividing the interval

into n equidistant subinterval and calculating the upper and lower step function. Recall that
Zn k2 — n(n+1)(2n+1)
k=0" = 6

Solution: We calculate the lower bound. For fixed n we have the partition P = (z4)k=0,.n

k 1
of [0, 1] such that |z = — | The intervals are (%, %) and we have || P| = Az = — |.
n n

As f(x) = 2% is an increasing function on the interval [0, 1] we know that the minimal value in
each subinterval is the left endpoint. Hence for our step function fr, = fr p

2
fo(x)=f (2) = <z> for all z € (i)k;}—l)

Integrating f; we obtain:

1 n—1

n—1 2 n—1
k k 1 1 s 1 (n—=1)-n-(2n-1)
k=0 k=0 k=0

0

Taking the limit n — co we obtain:

.1 (n=1)n-(2n-1) 2?2 -3n+1 2 1
lim — - = lim ==/ "'~ 2 _ =
n—o0 n3 6 n—00 6n2 6 3
Note: It follows from the proof of Theorem 7 that the limit n — oo must exist. In fact this is
still true if we take any point ¢ € (zk, xg11) instead of the minimum to construct a step function
T such that T'(z) = f(ck) on (zk, zr41) and take finer and finer partitions.

Theorem 9 (Cauchy-Schwarz inequality for integration)
Let f,g: [a,b] — R be two continuous functions. Then f2 and g2 are continuous functions and

e have |/:f(1:)g(:1:) dz|? < (/b f*(x) dx) : (/abgz(w) dz)
proof exercise

Hint: The proof of Theorem 7 shows that we can find approximating lower and upper step
functions for f and g on an equidistant partition.
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Theorem 10 (Mean value theorem of integration) Let f, g : [a,b] — R be two contin-
uous functions, such that g(x) > 0 for all « € [a,b]. Then there is ¢ € (a,b), such that

[t =1 [ gwa

m = min{f(x),z € [a,b]} = f(u) and M = max{f(z),z € [a,b]} = f(v).

proof We set

Then as g > 0 we know that m-¢g < f-g < M - g and by Theorem 8 b,c) we have

Jn / dx</f x)dx < M /
7f( a a

If f;g(ac) dz = 0 then it follows from this inequality that f; f(z)g(z) = 0 and our statement is

>0
true. If fab g(x)dx 270 then we can divide the inequality by this value and obtain

ff x)g(x
_—fgx <

By the Mean value theorem there is a ¢ € [a, b], such that

_f@e@ydr
f@—ﬁwwméﬂ)LgUd—Lf(M)d

and again our statement is true.

< f(v).




