Definition

A graph G consists of a set of vertices V and a set of edges E, where an edge is an unordered pair of vertices.

Examples

1. Computer Networks
$V=\{$ computers $\}$
$E=\{\{A, B\} \mid$ computers A and B are networked $\}$
2. Social Networks

$$
\begin{aligned}
& V=\{\text { Alice, Bob, Chris, Daniel, ... }\} \\
& E=\{\{A, B\} \mid A \text { and } B \text { know each other }\}
\end{aligned}
$$

3. $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$ and $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}$.

Directed Graphs

A directed graph or digraph G consists of a set of vertices V and a set of directed edges E, where an edge is an ordered pair of vertices.

Examples

1. Functional Digraphs. Let f be a function from X to Y.

$$
\begin{aligned}
& V=X \cup Y \\
& E=\{(x, y) \in X \times Y \mid f(x)=y\}
\end{aligned}
$$

2. Game Theory
$V=$ \{possible game states $\}$
$E=\{(A, B) \mid$ state B can be achieved from state $A\}$

Problems

- Eulerian Path - Can we draw a given graph without lifting our pencil from the paper and without repeating edges?

- Hamiltonian Path - Can we visit each vertex once and only once using only the edges of a graph?

- Isomorphism Problem - When are two graphs the "same"?

- Shortest Route - Find the shortest path between two vertices

- Assignment Problem - How do you assign tasks to individuals so that each person can do the task assigned to them? How can you minimize time required to complete all tasks?

- Network Flow Problems - Determine the least expensive way to transport product from surplus sites to demand sites.

- Planar Graphs - Can a given graph be drawn without any pair of edges crossing? Applications to chip design.

- Chromatic Numbers - What is the minimum number of distinct colors needed to label the vertices of a graph so that no two adjacent vertices are colored the same? Four Color Theorem.

- Traveling Salesman Problem - In what order should you visit cities $c_{1}, c_{2}, \ldots, c_{n}$ so that you minimize the distance traveled?

- Ramsey Numbers - What is the minimum number of people required to guarantee that there are m people who all know each other or n none of whom know each other

$$
\begin{aligned}
R(m, 1) & = \\
R(2,2) & = \\
R(2, n) & = \\
R(3,3) & = \\
R(4,4) & = \\
R(5,5) & =
\end{aligned}
$$

