P. HALL

ON REPRESENTATIVES OF SUBSETS

P. HALL[†].

1. Let a set S of mn things be divided into m classes of n things each in two distinct ways, (a) and (b); so that there are m (a)-classes and m (b)-classes. Then it is always possible to find a set R of m things of S which is at one and the same time a C.S.R. (= complete system of representatives) for the (a)-classes, and also a C.S.R. for the (b)-classes.

This remarkable result was originally obtained (in the form of a theorem about graphs) by D. König[†].

In the present note we are concerned with a slightly different problem, viz. with the problem of the existence of a C.D.R. (= complete system of *distinct* representatives) for a finite collection of (arbitrarily overlapping) subsets of any given set of things. The solution, Theorem 1, is very simple. From it may be deduced a general criterion, viz. Theorem 3, for the existence of a *common* C.S.R. for two distinct classifications of a given set; where it is not assumed, as in König's theorem, that all the classes have the same number of terms. König's theorem follows as an immediate corollary.

2. Given any set S and any finite system of subsets of S:

(1)
$$T_1, T_2, ..., T_m;$$

we are concerned with the question of the existence of a complete, set of distinct representatives for the system (1); for short, a C.D.R. of (1).

By this we mean a set of m distinct elements of S:

(2)
$$a_1, a_2, ..., a_m,$$

such that

 $(a_i \text{ belongs to } T_i)$ for each i = 1, 2, ..., m. We may say, a_i represents T_i .

It is not necessary that the sets T_i shall be finite, nor that they should be distinct from one another. Accordingly, when we speak of a system of

[†] Received 23 April, 1934; read 26 April, 1934.

[‡] D. König, "Uber Graphen und ihre Anwendungen", *Math. Annalen*, 77 (1916), 453. For the theorem in the form stated above, cf. B. L. van der Waerden, "Ein Satz über Klasseneinteilungen von endlichen Mengen", *Abhandlungen Hamburg*, 5 (1927), 185; also E. Sperner, *ibid.*, 232, for an extremely elegant proof.

k of the sets (1), it is understood that k formally distinct sets are meant, not necessarily k actually distinct sets.

It is obvious that, if a C.D.R. of (1) does exist, then any k of the sets (1) must contain between them at least k elements of S. For otherwise it would be impossible to find distinct representatives for those k sets.

Our main result is to show that this obviously necessary condition is also sufficient. That is

THEOREM 1. In order that a C.D.R. of (1) shall exist, it is sufficient that, for each k = 1, 2, ..., m, any selection of k of the sets (1) shall contain between them at least k elements of S.

If A, B, \ldots are any subsets of S, then their meet (the set of all elements common to A, B, \ldots) will be written

$$A \wedge B \wedge \dots$$

Their join (the set of all elements which lie in at least one of A, B, ...) will be written

$$A \lor B \lor \dots$$

To prove Theorem 1, we need the following

LEMMA. If (2) is any C.D.R. of (1), and if the meet of all the C.D.R. of (1) is the set $R = a_1, a_2, ..., a_{\rho}$ (ρ can be 0, i.e. R the null set), then the ρ sets

$$T_1, T_2, ..., T_p$$

contain between them exactly ρ elements, viz. the elements of R.

R is, by definition, the set of all elements of S which occur as representatives of some T_i in every C.D.R. of (1).

To prove the lemma, let R' be the set of all elements a of S with the following property: there exists a sequence of suffixes

such that

$$i, j, k, ..., l', l$$

 $a \in T_i,$
 $a_i \in T_j,$
 $a_j \in T_k,$
...
 $a_{l'} \in T_l,$
and, further,
 $l \leq \rho.$

a

First, we shall show that every element a of R' belongs to (2). For, if not, replace, in (2),

by $a_i, a_j, a_k, ..., a_l$ $a_i, a_i, a_j, ..., a_{l'}$

respectively; we obtain a new C.D.R. of (1) which does not contain a_l . Hence a_l does not belong to R, which contradicts $l \leq \rho$.

There will be no loss of generality in assuming that

$$R' = a_1, a_2, ..., a_{\omega}.$$

For it is clear that R' contains R.

Next, it is clear that if a is any element of T_i , where $i \leq \omega$, then

 $a \in R'$.

For then $a_i \in R'$, and hence j, k, ..., l can be found with $l \leq \rho$ and such that

$$a_i \in T_j,$$
$$\dots$$
$$a_{l'} \in T_l.$$

And $a \in T_i$ then shows that $a \in R'$ also. Hence every element of T_i $(i \leq \omega)$ belongs to R'. In other words, the ω sets

$$T_1, T_2, ..., T_{\omega}$$

contain between them exactly ω elements, viz. the elements of R'. In every C.D.R. of (1), therefore, these ωT_i 's are necessarily represented by these same ω elements. This shows that R' is contained in R. Hence

 $\begin{array}{ll} R'=R,\\ \text{and} & \rho=\omega,\\ \text{and} & R=T_1 \lor T_2 \lor \ldots \lor T_\rho. \end{array}$

This is the assertion of the lemma.

The proof of Theorem 1 now follows by induction over m. The case m = 1 is trivial.

We assume then that any k of the sets (1) contain between them at least k elements of S, and also that the theorem is true for m-1 sets. We may therefore apply the theorem to the m-1 sets

(4)
$$T_1, T_2, ..., T_{m-1}$$

These have, accordingly, at least one C.D.R. Hence (1) will also have at least one C.D.R., provided only that T_m is not contained in *all* the C.D.R. of (4).

But if (without loss of generality)

$$R^{*} = a_1, a_2, ..., a_{\rho} \quad (\rho \ge 0)$$

is the meet of all the C.D.R. of (4), and if T_m is contained in R^* , then, by the lemma, the $k = \rho + 1$ sets

$$T_1, T_2, ..., T_p, T_m$$

contain between them only ρ elements, viz. those of R^* . This being contrary to hypothesis, T_m is not contained in R^* ; and so, if a_m is any element of T_m not in R^* , there exists a C.D.R. of (4) in which a_m does not occur. This C.D.R. of (4) together with a_m constitutes the desired C.D.R. of (1).

An elementary transformation of Theorem 1 gives

THEOREM 2. If S is divided into any number of classes (e.g. by means of some equivalence relation),

$$S = S_1 \lor S_2 \lor S_3 \lor \dots,$$

and $S_i \wedge S_j$ is the null set, for $i \neq j$, then there always exists a set of m elements

$$a_1, a_2, \ldots, a_m,$$

no two of which belong to the same class, such that

$$a_i \in T_i$$
 $(i = 1, 2, ..., m),$

provided only that, for each k = 1, 2, ..., m, any k of the sets T_i contain between them elements from at least k classes.

Proof. Denote by t_i the set of all classes S_i for which the meet

 $S_i \wedge T_i$

is not null. The condition to be satisfied by the sets T_i may then be expressed thus: any k of the t_i 's contain between them at least k members. Applying Theorem 1, it follows that there exists a set of m distinct classes, for simplicity T_i T_i T_i T_i

$$S_1, S_2, \ldots, S_m$$

such that, for i = 1, 2, ..., m, the set

$$S_i \wedge T_i = M$$

is not null. Choosing for a_i an arbitrary element from M_i , the result follows.

A particular case of some interest is

THEOREM 3. If the set S is divided into m classes in two different ways,

$$S = S_1 \lor S_2 \lor \dots \lor S_m,$$

$$S = S_1' \lor S_2' \lor \dots \lor S_m',$$

 $S_i \wedge S_j = S'_i \wedge S'_j = null$ set, for $i \neq j$, then, provided that, for each k = 1, 2, ..., m, any k of the classes S'_i always contain between them elements from at least k of the classes S_i , it will always be possible to find m elements of S,

 $a_1, a_2, \ldots, a_m,$

such that (possibly after permuting the suffixes of the S_i)

 $a_i \in S_i \wedge S_i' \quad (i = 1, 2, ..., m).$

The case in which all the classes have the same (finite) number of elements clearly fulfils the proviso. Theorem 3 then becomes the well-known theorem of König, referred to above.

The generalization of König's theorem due to R. Rado[†] may also be deduced without difficulty from Theorem 3.

King's College,

Cambridge.

ON THE ADDITION OF RESIDUE CLASSES

H. DAVENPORT ‡.

1. The object of this note is to give a proof of the following simple theorem:

A. Let p be a prime; let $a_1, ..., a_m$ be m different residue classes mod p; let $\beta_1, ..., \beta_n$ be n different residue classes mod p. Let $\gamma_1, ..., \gamma_l$ be all those different residue classes which are representable as

 $l \ge m+n-1$,

$$a_i+\beta_j$$
 $(1 \leq i \leq m, 1 \leq j \leq n).$

Then

provided that $m+n-1 \leq p$, and otherwise l=p.

This may be described as the "mod p analogue" of a conjecture concerning the density of the sum of two sequences which is naturally suggested by the recent work of Khintchine§. I am indebted to Dr. Heilbronn for suggesting this question to me and for simplifying the method of presentation of the proof.

30

[†] R. Rado, "Bemerkungen zur Kombinatorik im Anschluss an Untersuchungen von Herrn D. König", Berliner Sitzungsberichte, 32 (1933), 60, Satz I, 61.

[‡] Received 16 April, 1934; read 26 April, 1934.

[§] A. Khintchine, "Zur additiven Zahlentheorie", Rec. Soc. Math. Moscou, 39 (1932), 3, 27-34.