
The Parallel Postulate
and an outline of the course

Once upon a time (about 300 BC, specifically), a Greek named Euclid
wrote a book called the Elements, in which he laid out a system of geometry
and proofs of theorems in his system. He had five postulates, statements
which he presented without proof as givens (the modern term would be
axioms). These five postulates have hundreds and hundreds of consequences;
all of plane geometry stems from them. Here they are:

Let the following be postulated
1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straight line.
3. To describe a circle with any center and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight lines makes the

interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side
on which are the angles less than two right angles.

These may be modernized a little, and the fifth replaced by a logically
equivalent statement, as follows:

1. Any two points may be joined by a straight line.
2. Any finite straight line segment may be extended indefinitely to longer

straight line segments.
3. Given any finite line segment, one may draw a circle with that segment

as radius and one of its endpoints as center.
4. All right angles are congruent.
5. Given a straight line and a point not on the line, there is exactly one line

through the given point parallel to the given line.

The fifth is called the Parallel Postulate and was the object of much study
in geometry from as early as 100 years after the Elements. Many geometers
thought only the first four postulates were necessary, and the fifth could be
proved from them. None were successful, however.

We should clarify that by “parallel” lines we mean “nonintersecting no
matter how far you extend them”. For our examples we will also be using
“straight line” to mean “shortest distance between two points”; this will not
always be a line per se, as we will explain in the examples.

Now on to why no one was successful in proving the Parallel Postulate from
the first four: it does not follow from them. It was in the early nineteenth
century, more than two thousand years after Euclid, that Gauss, Bolyai, and
Lobachevski all came independently to that conclusion.

How does one show that there is no proof of the fifth postulate from the
first four? By showing there are models of geometry in which the first four



postulates hold, but the fifth does not. This may be the reason it took so
long for the realization that it did not hold; it is a counterintuitive notion
if you are thinking of “geometry” as plane geometry. However, there are
numerous examples in the world around us of non-plane geometry. Think of
the globe, for instance. What is a “straight line” on a globe? The shortest
distance between two points, as any student of airplane routes will know, is a
segment of the great circle joining those two points. A great circle is a circle
on the surface of a sphere that shares its center with the sphere, or in other
words one that has maximal circumference. Therefore “straight lines” on
spheres lie on great circles. The first four postulates all hold on the sphere,
but any two great circles intersect, so the Parallel Postulate is false.

It is also possible to construct geometries in which the first four postulates
hold but there are multiple lines through a given point parallel to a given
line. The canonical example here is hyperbolic space, which we won’t go
into.

There is an important distinction here that we have thus far swept under
the rug. Why does constructing geometries in which the Parallel Postulate
does or does not hold have any relationship to whether it follows via logical
deduction from the first four postulates? This brings us to the subject of this
course. We will begin by talking about formalization and what a deduction
is; how one manipulates logical formulas and draws conclusions. In this we
will distinguish between syntax and semantics. A syntactic implication is
one of symbol manipulation, a proof; it is independent of the “truth” of
the premise. Semantic implication occurs when the truth of the premise
always indicates the truth of another logical statement. One could think of
it as an observation. The Soundness Theorem states that whenever there
is a syntactic implication, there is also a semantic one. The Completeness
Theorem states the converse, so the two together give us the result that
constructing geometric systems in which the first four of Euclid’s postulates
hold but the fifth does not implies that there is no proof of the fifth postulate
from the first four.

Soundness holds in any reasonable axiom system (if you can prove false
statements from true ones, the system is useless), but Completeness holds
only of systems of a certain simplicity. Once the system gets complicated
enough (in particular to be able to make self-referential statements), it may
be incomplete: in possession of true but unprovable statements. We will
discuss incompleteness at the end of the course, in as much depth as we have
time for.


