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Trapezoid Rule

Many applications of calculus involve definite integrals. If we can find an antiderivative for the integrand,
then we can evaluate the integral fairly easily. When we cannot, we turn to numerical methods. The
numerical method we will discuss here is called the Trapezoid Rule. Although we often can carry out the
calculations by hand, the method is most effective with the use of a computer or programmable calculator.
But at the moment let’s not concern ourselves with these details. We will describe the method first, and
then consider ways to implement it.
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The general idea is to use trapezoids instead of rectangles to approximate the area under the graph
of a function. A trapezoid looks like a rectangle except that it has a slanted line for a top. Working on
the interval [a, b], we subdivide it into n subintervals of equal width h = (b — a)/n. This gives rise to the
partition @ = z9 < 1 < 2 < --- < x, = b, where for each j, ; = a+ jh, 0 < j < n. Moreover, we let
y; = f(x;),0 < j < n. That is, the vertical edges go from the z-axis to the graph of f. Consult the sketch
above where we have shown a finite number of subintervals.

If we are going to use trapezoids instead of rectangles as our basic area elements, then we have to have
a formula for the area of a trapezoid.
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With reference to the sketch above, the area of a trapezoid consists of the area of the rectangle plus the
area of the triangle, or hyr, + (h/2)(yr — yr) = h(yr + yr)/2. So, the area is h times the average of the
lengths of the two vertical edges.

Now, we return to the original problem of finding the definite integral of a function f defined on the
interval [a,b]. We define the Trapezoid Rule as follows.



Definition: The n-subinterval trapezoid approximation to f; f(z) dzx is given by
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To see where the formula comes from, let’s carry out the process of adding the areas of the trapezoids.
Refer to the original sketch, and use the formula we derived for the area of a trapezoid. Note that when we
add the areas of the trapezoids starting on the left, the area of the first , second, and third are:
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So, yo and ys, the first and the last, each appear once; and all the other y;’s appear exactly twice. We can
see from this example that there will be a similar pattern no matter the number of trapezoids: The first and
the last vertical edge appears once, and all other vertical edges appear two times when we sum the areas of
the trapezoids. This is exactly what the Trapezoid Rule entails in the formula above.
Example 1: Find T} for f12 1 dz. We can readily determine that f(x) = 1/x, h = 1/5 (so h/2 = 1/10),
and z; =14 5/5,0 < j <5.
1/5 15 15 15 15

1 1.2 1.4 1.6 1.8 !

So,

1 1 5 5 5 5

Example 2: Find T3 for fol V1 — 22 dx. That is, we are going to approximate one-quarter of the area
of a circle of radius 1. The exact answer is 7/4, or approximately .7853981635. Note that h = 1/5, yo = 1
and y5; = 0. Thus,
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or about .7592622072.
Simpson’s Rule

Another technique for approximating the value of a definite integral is called Simpson’s Rule. Whereas
the main advantage of the Trapezoid rule is its rather easy conceptualization and derivation, Simpson’s rule



approximations usually achieve a given level of accuracy faster. Moreover, the derivation of Simpson’s rule
is only marginally more difficult. Both rules are examples of what we refer to as numerical methods.

In the Trapezoid rule method, we start with rectangular area-elements and replace their horizontal-line
tops with slanted lines. The area-elements used to approximate, say, the area under the graph of a function
and above a closed interval then become trapezoids. Simpson’s method replaces the slanted-line tops with
parabolas.

Though two points determine the equation of a line, three are required for a parabola. We also need
to develop a formula for the area of a parabolic-top area-element if the sum of such areas is to become the
Simpson approximation.
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Suppose we consider a parabola y = Ax? + Bz + C with its axis parallel to the y-axis and passing
through three equally spaced points (—h,yr), (0,ya), and (h,ygr). Then substituting the three points into
the equation gives three equations in the three unknowns A, B, C.

yr = Ah*—Bh+C
yvu = C
yr = Ah>4+Bh+C

Solving these three equations by adding the first to the last, and then by subtracting the last from the
first, yields:

24R* = yr+yr—2ym
1 yr—yL
B = - Yr_YL
h 2
C = ywm

Next, we compute the area under the parabola y = Az? + Bx + C and above the interval [—h, h] for the
values of A, B, and C we just found:
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The above formula holds for the area of a parabolic topped area element with base of length 2h and
vertical edges of length y;, on the left and yr on the right. The height at the midpoint is y,;.

Now, let n be an even positive integer, and suppose we divide an interval [a,b] into n equal parts each
of length h = b;—“. And suppose f is a function defined on [a,b]. As before we label the resulting partition
a =z <1 <9 <o <y = b, where for each j, z; = a+ jh, 0 < j < n. And again, we let
y; = f(z;),0 < j < n. That is, the vertical edges go from the z-axis to the graph of f.

Next, start at the left endpoint a of the interval and erect a parabolic-top area-element on the first two
subintervals. The base of this area-element goes from zy to z2, and we use as vertical sides the lines that
intersect the graph at (zg,yo) on the left and (x2,y2) on the right. The point (z1,y1) on the graph of
f at the midpoint of the interval gives the third point we need to determine the parabola that forms the
top of the area-element. From the formula we developed above, the area of this area-element is equal to
B (yo +y2 + 4y1).

If we repeat this process using the next two subintervals that go from xzo to x4, then the area of the
resulting parabolic-top element will be (from an application of the formula above) % (y2 + ya + 4y3). Thus,
the sum of the areas of the two parabolic-top elements equals % (yo + 4y1 + 2y2 + 4ys + y4). We continue in
this way until we have calculated the areas of the 5 parabolic-top area elements and added them together.

A pattern begins to emerge in the form of the sum of the areas of the § parabolic-top area-elements. The
sum will equal% multiplied by: yo + yn, , i.e. the sum of the heights of the leftmost and rightmost vertical
edges; plus 4 times the sum of the odd-indexed heights; plus 2 times the sum of the even-indexed heights
because these edges belong to two successive area-elements, one on the left and the other on the right. This
explains the form of the Simpson’s Rule approximation which we now state

Definition: Let n be even. The n-subinterval Simpson approximation to f; f(x) dx is given by
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Example 3: Find S, for f12 % dx. The exact answer is In 2, or approximately 0.6931471806. In Example
1 we found that T5 is equal to about 0.0696. If we are to use Simpson’s rule for an approximation, then n
has to be even. Therefore, S is a legitimate sum to calculate. Note that h = 1/4. The five points of the
partition are zo = 1, 1 = 5/4, x9 = 3/2, 3 = 7/4, x4 = 2. And the corresponding y-values are yo = 1,



y1 =4/5, y2 =2/3, y3 = 4/7 and y4 = 1/2. Thus,

1 1
Sy = D (1+2+4(y1 +y3)+2(y2))

1 1 4 4 2
2 (tea (i) 2 (3))

0.6932539683.
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Note that S; with a smaller n is a better approximation to the actual value of the integral than T5.
Example 4: Find S, for fol V1 — 22 dz. The exact answer is /4, or approximately 0.7853981635, one-
quarter of the area of a circle of radius 1. In Example 2 we found that T5 is equal to about 0.7592622072.
If we are to use Simpson’s rule for an approximation, then n has to be even, so S4 makes sense. Note that
h = 1/4. The five points of the partition are zo = 0, 1 = 1/4, 2o = 1/2, 3 = 3/4, z4 = 1. And the
corresponding y-values are yg = 1, y1 = /1 — 1/16, y2 = /1 — 1/4, y3 = /1 — 9/16 and y4 = 0. Thus,

1
S, = E(1+0+4(y1 +y3) +2(y2))

- %(1+0+4(M+ T/16) +24/3/1)

or about 0.7708987887. The latter is a better approximation with a smaller n than we got with the Trapezoid
rule.

Error Comparisons: As we found to be true in the examples, Simpson’s rule is indeed much better
than the Trapezoid rule. As n — oo it generally converges much more rapidly to the value of the definite
integral than does the Trapezoid rule.

We can get a sense of the differences in the rates of convergence of the two methods from the folowing
two theorems:

Thl: Suppose the second derivative of f is continuous and hence necessarily bounded by a positine
number M; on [a,b]. If errory, = f; f(x) dz — T,,, then
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Th2: Suppose the fourth derivative of f is continuous and hence necessarily bounded by a positive
number My on [a,b]. If errorg, = f; f(z) dx — Sy, then
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These theorems imply that in many situations, as n — oo, |errory, | — 0 like 1/n? and |errors, | — 0
like 1/n*. This explains why in general we are not surprised to find that Simpson’s rule converges to the
value of the integral much faster than the Trapezoid rule.

Importance of the Trapezoid and Simpson Rules: You might ask,What is the point of the Trap
and Simp approximations in this age of computers? The answer is that they are simple to use and give
excellent results, surprisingly so even for small n. A little arithmetic can yield a good estimate of a definite
integral with only modest effort. Not bad, eh?

Applet: Numerical Integration Try it!

Exercises: Problems Check what you have learned!

Videos: Tutorial Solutions See problems worked out!


http://www.math.dartmouth.edu/~klbooksite/appfolder/tools/NumericalIntegration.html
http://www.math.dartmouth.edu/~m3cod/webworklogin.htm
http://www.math.dartmouth.edu/~calcsite/video1.html

