The Simplest Functions: Lines!

Recall: Two points define a line!
Slope: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ (rise/run)
Point-slope Form: $y-y_{1}=m\left(x-x_{1}\right) \quad$ (good for writing down lines)
Slope-intercept Form: $y=m x+b \quad$ (good for graphing)
General Form: $A x+B y+C=0 \quad$ (good when the slope is ∞)

Special Cases of Lines

Constant Functions: $m=0 \quad$ Vertical Lines: $m=\infty$

Parallel Lines: $m_{1}=m_{2}$

Perpendicular Lines: $m_{1}=-1 / m_{2}$

Practice with Lines

(1) Find the equation of the above line using the different forms: Slope:

Point-slope Form:

Slope-intercept Form:

General Form:

(2) Find the equation of the line that is perpendicular to $y=\frac{3}{2} x+1$ that goes through the point $(1,1)$.

Knowing Graphs of Functions

For each of the functions below, ensure you can sketch the graph and list the function's domain and range.
Polynomials: $f(x)=x^{2}, f(x)=x^{3}, f(x)=x^{4}, f(x)=x^{5}$
Rationals: $f(x)=\frac{1}{x}, f(x)=\frac{1}{x^{2}}$
Roots: $f(x)=x^{1 / 2}=\sqrt{x}, f(x)=x^{1 / 3}=\sqrt[3]{x}$
Trigonometry: $f(x)=\sin x, f(x)=\cos x, f(x)=\tan x$
Logarithms, Exponential: $f(x)=\ln x, f(x)=e^{x}$

New Functions from Old

Ex: Transform the graph of $f(x)$ into the graph of $-f\left(\frac{1}{2}(x+1)\right)+2$.
First, draw the graph of $\sin x$

$\xrightarrow{\text { (1) } f\left(\frac{1}{2} x\right)}$

(4) $-\underset{ }{f\left(\frac{1}{2}(x+1)\right)}+2$

$\left.(3) \xrightarrow{-f\left(\frac{1}{2}(x+1)\right.}\right)$

Practice

(1) Sketch the graph the following functions. Find the domain and range of each.
(a) $y=|x+3|$

Domain:

Range:
(b) $y=\frac{(2 x)^{3}+3 x}{x}$

(2) Let $f(x)=\frac{x+1}{3 x-2}$ and $g(x)=\frac{1}{x}$.
(a) Calculate $(f \circ g)(x)$ and $(g \circ f)(x)$.
(b) What is the domain of $(g \circ f)(x)$? (Hint: Be careful! The domain of $(g \circ f)(x)$ will be those x 's where $f(x)$ exists AND $(g \circ f)(x)$ exists.
(3) Let $f(x)=\frac{x+1}{3 x-2}$.
(a) Calculate $f^{-1}(x)$.
(b) Check your answer to (a) by explicit calculating both $f \circ f^{-1}$ and $f^{-1} \circ f$. (You should get x both times).
(c) If $(f \circ g)(x)=x+2$, what is $g(x)$? (Hint: Since $(f \circ g)(x)$, we know that $g(x)=f^{-1}(f(g(x)))=f^{-1}(x+2)$
(4) (a) Does $f(x)=x^{2}$ have an inverse? If yes, what is it? If no, why not?
(b) Consider $f(x)=x^{2}$ with Domain $=[0, \infty)$. Does this function have an inverse? If yes, what is it? If no, why not?
(5) Match each graph to its inverse.
A.

B.

C.

D.

