## Homework 2

## Due February 19, 2014

(1) Find a solution to the differential equation $\frac{d y}{d x}=\frac{1}{2}\left(x^{2}-1\right)$ that satisfies $y(0)=2$.
(2) Use implicit differentiation to find the equation of the tangent line to the curve $y^{2}\left(y^{2}-\right.$ $4)=x^{2}\left(x^{2}-5\right)$ at the point $(0,-2)$. (This curve is actually called the "Devil's Curve." But don't let that intimidate you!)
(3) Assume you have a perfectly spherical snowball that is melting. If the surface area of the snowball is decreasing at a rate of $1 \mathrm{~cm}^{2} / \mathrm{min}$, find the rate at which the diameter decreases when the diameter is 10 cm .
(4) Use Euler's Method to find $y(6)$ given the differential equation $\frac{d y}{d x}=2 x-3 y$ starting at the point $(4,3)$ with step size $\Delta x=0.5$. Use the table below to show each step.

| $x$ | $y$ | $\frac{d y}{d x}$ | $\Delta y$ |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

