- . (10 points). (a) Find the MM estimator of λ in the Poisson distribution and prove that it is unbiased given a random sample $X_i \stackrel{\text{iid}}{\sim} \mathcal{P}(\lambda)$, i=1,2,...,n. (b) Prove that $\sum_{i=1}^n (X_i \overline{X})^2/(n-1)$, as another estimator of λ , is unbiased. (c) Use simulations to compare the performance of both estimators for a sequence of λ at fixed n using the empirical MSE computed as the average of $(\widehat{\lambda}_k \lambda)^2$ where k is the kth simulation. [Hint: Use n as an argument of your function and plot the two MSEs on the same graph over sequence of λ from 0.5 to 3 with the step 0.5; show the graph with n=5 and the number of simulations 10,000. Make necessary notations.]
- 2. (5 points). Let in the simple linear regression $x_k = \min x_i$ and $x_l = \max x_i$. Define an estimator of the slope as $\widetilde{\beta} = (Y_l Y_k)/(x_l x_k)$. (a) Prove that this estimator is unbiased and provide a geometric illustration. (b) Prove that $var(\widehat{\beta}) \leq var(\widetilde{\beta})$.
- 3. (15 points). Modify function simlin to demonstrate by simulations that (1) $var(\widehat{\beta}) = \sigma^2 / \sum_{i=1}^n (x_i \overline{x})^2$, (2) $\sqrt{\sum_{i=1}^n (x_i \overline{x})^2} (\widehat{\beta} \beta) / \widehat{\sigma}$ has t-distribution with n-2 df, and (3) $\widehat{\beta} \pm t_{1-\alpha/2}$ SE covers the true β with probability $1-\alpha$. [Hint: Print out the thoretical and simulation-derived variance of the slope; to demonstrate the t-distribution superimpose the empirical cdf from simulations with the theoretical t-distribution, use $\lambda = 0.95$, nSim=10000, and summary(outLM)\$sigma to extract $\widehat{\sigma}$.]