

Video Games and the Risk of Reckless Driving

An Application to Car Insurance

Kyle Dotterrer, Sam Marciano, Andrew Shipman, Lucy (Ao) Zhang

Context and Previous Studies

"36% of American adolescents game regularly with 80% of the players being boys" (Cummings & Vandewater 2007)

Exceeds time spent watching films and TV (Fischer et. al 2007)

Previous research has a found a significant, positive relationship between video game playing and risky driving behavior

Beullens, Roe & Van den Bulck (2011)

Fischer et. al (2007)

Hull Draghiai & Sargant (2012)

Basic Stats: Data Organization

The data consists of 1389 observations, where each observation responds to 13 different fields.

Besides the "age" field, each field has one of the following responses:

"yes/always"

unsafe	videog	male	race	age	ed	sens	rebel	resp	dem	sprt	school	church
0	1	1	1	17.08333	0	0	0	-1	-1	1	0	0
0	0	0	1	16.41667	-1	0	-1	1	1	1	1	0
0	1	1	1	14.91667	-1	-1	0	0	0	1	0	0
0	1	0	1	15.91667	1	0	1	1	0	1	-1	0

Basic Stats: Field Breakdown & Proportions

Legend

Ed = parents' education (low/average/high) *Sens* = sensation seeker *Rebel* = rebel in nature *Resp* = responsible *Dem* = demanding parents *School* = academic performance (poor/average/high) Unsafe = unsafe driving Videog = video gaming or not Male = bpy/girl Race = white/non-white Sprt = play sport or not Church = go to church or not

Basic Stats: Age

Mean age: 16.472

Minimum age: 12 yrs, 10 mths

Maximum age: 19 yrs, 6 mths

Number of Observations For Ages Number of Observations

How do we perform regression analysis when response variable is binary?

Outcome variable follows bernoulli distribution

OLS with binary response = linear probability model

Heteroskedasticity

Errors not normally distributed

Linearity (lack of constraints on outcome variable)

 $\begin{array}{l} \text{logit}(p) = \ln[p/(1-p)] = a + bx1 \\ \text{The solution? Logistic regression} \end{array}$

Output of logistic regression is *probability* of success outcome Log odds of success = linear function of predictors

Logistic Regression

The outputs of our regression (our coefficients) are log odds

Estimated regression equation (solve for *p*) $p = e^{(a + bx)} / [1 + e^{(a + bx)}]$

estimating probability of a getting a 1 ('success'), or *p*, for any linear combination of values of the predictor variables

Domain -> $(-\infty, \infty)$ Range -> [0, 1]

Logistic Regression: Model & Results

glm(formula = unsafe ~ videog + age, family = "binomial", data = df)

	Estimate	Standard Error	Z Value	P(> Z)
(Intercept)	-10.98438	0.93244	-11.78	< 2e-16 ***
videog1	0.58732	0.13273	4.425	9.65e-06 ***
age	0.5765	0.05537	10.412	< 2e-16 ***

- Unit increase in age -> log odds of unsafe driving behavior increase by 0.58
- Playing video games -> log odds of unsafe driving behavior increase by 0.59

Predicted Probabilities

- Hold age constant at mean
- Compute predicted probability of unsafe driving behavior

	Odds Ratio	2.50%	97.50%
Intercept	1.70E-05	2.64E-06	0.0001
videog	1.80E+00	1.39E+00	2.3363
age	1.78E+00	1.39E+00	1.9871

age	videog	Predicted Probability
16.47222	0	0.184
16.47222	1	0.289

Predicted probability of unsafe driving increases from 0.184 to 0.289 in response to video game playing Odds Ratios & Confidence Intervals

- Exponentiate regression coefficients
- Able to interpret as odds ratios
- Exponentiate confidence

Predicted Probability of Unsafe Driving Behavior as a Function of Age

Logistic Regression: Model Fit

No direct analog to linear regression R^2 in logistic regression

Use *deviance* instead of sum of squares D = -2ln(likelihood of fitted model / likelihood of saturated model)

Two important deviances measures: null and model

Null = intercept only, no predictors

Model = at least one predictor

Linear Regression: Model Fit

Takeway: the addition of predictor variables significantly improved model fit!

Expanded Individual Regressions

independent variable

Correlation Matrix

Legend

unsf = unsafe driving vg = video gamingmale = boy/girlrace = white/nonwhite age = yearsed = parents' education sns = sensation seeker rbl = rebel in nature resp = responsibledem = demanding parents or not sprt = play sports or not sch = academic performance ch = go to church or not

Multicollinearity assumption

Probabilities

Regression With Additional Controls

Checked the sensitivity of our previous regression by including controls for age, gender and sensation seeking

	Estimate	Standard Error	Z Value	P(>Z)
(Intercept)	-11.119	0.953	-11.671	< 2e-16 ***
videog	0.296	0.142	2.082	0.0374 *
gender	0.388	0.16	2.428	0.0152 *
age	0.565	0.0563	10.043	< 2e-16 ***
sensation	0.537	0.0936	5.739	9.54e-09 ***

Conclusions and Implications

Limitations

- Selection bias; response bias (self-reporting)
- Non time-series data

Risk Policy

Male, sensation-seeking video gamers will be charged the highest premium. Video gamers, independent of other variables, will not be charged as high of a premium as other independent fields (e.g. age and sensation-seekers).

Conclusion

Video gaming important factor, even once controlled for additional variables, but not the only significant indicator for driving violations

References

http://stats.idre.ucla.edu/r/dae/logit-regression/

http://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-how-do-i-interpret-odds-ratios-in-logistic-regression/

http://www.apa.org/pubs/journals/releases/ppm-1-4-244.pdf

http://ac.els-cdn.com/S0001457510001995/1-s2.0-S0001457510001995-main.pdf?_tid=279d7620-00ed-11e7-abfd-00000aab0f26&acdnat=1488640603_3ebdca5615003b0a45bb76b1395eed7f

http://www.apa.org/pubs/journals/releases/xap-13122.pdf

Appendix: Conditional Basic Stats Graphically

Appendix: Probability of Traffic Violation by Age

