- The *D*-value -A Refined Look at the *p*-value

Helena Caswell, Milan Huynh and Jean Zhou

What is the p-value?

"Informally, a *p*-value is the probability under a specified statistical model that a statistical summary of the data (e.g., the sample mean difference between two compared groups) would be equal to or more extreme than its observed value." (Wasserstein & Lazar 2016, 130)

$$p = P(Z > z) = \Phi(z)$$

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

For example: If you compare two equal sized z =populations with the same standard deviation and population expected value

$$=\frac{\bar{y}-\bar{x}-(\mu_y-\mu_x)}{\sqrt{\frac{\sigma_x^2}{n_x}+\frac{\sigma_y^2}{n_y}}}=\frac{\bar{y}-\bar{x}}{\sigma\sqrt{2}}\sqrt{n}\implies p=\Phi\left(\frac{\overline{y}-\bar{x}}{s\sqrt{2}}\sqrt{n}\right)$$

What does the American Statistical Association (ASA) think about p-value?

"No single index should substitute for scientific reasoning" (Ronald L. Wasserstein & Nicole A. Lazar 2016, 132)

- p-value does *not* measure the size of an effect
- p-value does *not* measure the importance of a result

Basic and Applied Social Psychology is one journal that has banned use of p-values

Effect of sample size (n) on p-value

"with a large enough sample, n, the null hypothesis will always be rejected" (Demidenko)

Example of sample size on p-value

Experiment: Testing a new anti-obesity drug on *n* obese people in placebo and drug group.

Null hypothesis: The new drug has no effect.

Trial: n = 10000 ; SD (s) = 20 lbs

placebo mean weight (\overline{x}) = 249 lbs ; drug mean weight (\overline{y}) = 250 lbs

$$p = \Phi\left(\frac{\overline{y} - \overline{x}}{s\sqrt{2}}\sqrt{n}\right)$$
 $p = 0.0002 \rightarrow \text{reject null hypothesis}$

What is D-value?

Comparison of individual outcomes - not mean outcomes

(e.g. the probability that a randomly chosen person from the treatment group will be heavier than a randomly chosen person from the placebo group)

 $p\text{-value} = \Pr(\overline{Y} > \overline{X}), \quad D\text{-value} = \Pr(Y_i > X_j).$ $p = \Phi\left(\frac{\overline{y} - \overline{x}}{s\sqrt{2}}\sqrt{n}\right) \quad d = \Phi\left(\frac{\overline{y} - \overline{x}}{s\sqrt{2}}\right)$

"The D-value also has a clear interpretation on the individual level and may be viewed as the n-of-1 p-value" (Demidenko)

Interpretation of d-value

D-value = effect size on the probability scale = Φ (effect size)

Effect Size = [Mean of experimental group] - [Mean of control group]
Standard Deviation

"For example, a widely used effect size of 0.5 means that the proportion of treated patients who do not improve will be roughly 30% and the proportion who do improve will be 70% (D-value = $(-0.5) \approx 0.3$)" (Demidenko)

ROC Curve

- X-axis: False Positive Rate = % of placebo individuals who weigh less than the criterion value = FP/Total placebo group
- Y-axis: % of treatment individuals who weigh more than criterion value = TP/Total treatment group
- The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate the test
- Pr(random weight from the placebo group < random weight from the treatment group) = the area above the ROC curve = the D-value

Why is d-value better?

"[The D-value], unlike the p-value, does not have a tendency to increase or decrease with the sample size" (Demidenko)

Standard Deviation v. Standard Error

Looking at p value is equivalent to looking at Standard Error

$$SE = \frac{SD}{\sqrt{n}}$$

Data represented: $\mu \pm SE$

Instead we should look at Standard Deviation which does not take *n* into account

The Linear Regression

$$y_i = \alpha + \beta x_i + \varepsilon_i, \qquad i = 1, 2, ..., n$$

The Typical 1-sided p-value (using the t-distribution)

$$df =$$
 degrees of freedom $= n - 1$
 $t = -\frac{|b|}{s}$
p-value $= p = \Pr(T_{df} < t)$

Here, we use normal distribution for presentation transparency

→ p-value =
$$p = \Phi\left(-\frac{|b|}{s}\right)$$

as $n \to \infty$, $p \to 0$
 $\rightarrow p$ is n-dependent

The *d*-value for Linear Regression

D-value =
$$d = \Phi\left(-\frac{|b|}{s\sqrt{n}}\right)$$

b = estimated difference in the means

 $s = standard error of the slope (from the regression estimation) = \frac{SD}{\sqrt{n}}$

Thus, we consider the D-value as the *n*-of-1 *p*-value when n = 1, p = d

Travel Time to the Nearest Cancer Center

- Predictors: Age, Stage, Surgery
- n = 47,383
- $R^2 = 0.0014$ only ~0.15% of Y can be explained by the 3 predictors
 - But look at the very small p-value! \rightarrow the regression explains almost nothing, but all predictors are statistically significant
- \rightarrow D-value (& B-value) reflects the actual relationship

Factor	Coefficient	SE	<i>p</i> -Value	D-value	<i>B</i> -value
Age (years)	-0.0054	0.00075	6.6×10^{-13}	0.487	0.513
Stage (0-4)	0.0098	0.00232	2.4×10^{-5}	0.492	0 508
Surgery (0,1)	0.0720	0.02225	1.2×10^{-3}	0.494	0.506

Pr(a woman with breast surgery spends more time for traveling to a cancer center compared to a woman with no surgery)

D-value (Probability Scale) vs. the Coefficient

$$d_{10 \text{ yr age difference}} = \Phi\left(-\frac{|0.0054 \times 10|}{0.00075 \sqrt{47,383}}\right) = 0.37$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients spend less time travelling than older patients})$$

$$= \Pr(\text{younger patients})$$

$$= \Pr(\text{young$$

CONCLUSION. MAJOR KEY.

- If you simply increase your sample size, then the p-value will eventually be statistically significant
 - Why some scientific studies non-reproducible
- D-value (B-value) is proportion of patients who got worse (better) after the treatment
 - The D-value & B-value are on a probability scale \rightarrow we can consider the likelihood of events under different scenarios.
- \rightarrow Eugene Demidenko has helped remove a strong bias toward large *n*!

STATISTICS IS COOL!

Eugene Demidenko (2016) The p-Value You Can't Buy, The American Statistician, 70:1, 33-38, DOI: 10.1080/00031305.2015.1069760

Ronald L. Wasserstein & Nicole A. Lazar (2016) The ASA's Statement on p-Values: Context, Process, and Purpose, The American Statistician, 70:2, 129-133, DOI: 10.1080/00031305.2016.1154108