Tweet Analysis

Presidential Statistics in 140 character
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Goal

1. Understand what Twitter statistics are
Important

2. Answer questions about the individual based
on the data



Data

e Scraped Twitter data using Twitter's API

in Python
e @realDonaldTrump, and @HillaryClinton
e ~3200 tweets each



What makes tweets popular?



The number of Tweets (Chronological)
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e The number of tweets drops
57 immediately after the election
day (Nov 8th)

91 w e Before Nov 8th, Mr. Trump

| constantly tweets (SD=9.946908),
while the number of tweets by
Ms. Clinton fluctuates
(SD=14.31795)
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Average number of Favorites earns (Chronological)

Average number of Favarites per tweet
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Mr. Trump earns 3.3 times more
favorites than Ms. Clinton



Is tweeting with photos/videos Effective?

Average number of Favarites per tweet

= — Trump: tweets with media = Hillary: tweets with media
g = — Trump: tweets with No media § — Hillary: tweets with No media
= ~
% §
S /‘ g 8
2 7 w N
@ 2
2 & o
o = w =2 _|
i \ . T - |
2 | | II
g || f| |i| || ||\| |i| ||1 | |I ||| ||II P 5 5 ﬁ | ﬂ
g | L)l | - NIRe | iy & 87 (L U( |
S | ypnl |l L ] il 2w i1 | A
\ Nyl \ N I
81 Vel b AL AL I g M A
i M |“"I|”|I|||||' |II \| | l ||| E e I r'||'III
SR by
Rl
[l
T T T T T T T
Aug Sep Oct Mov Aug Sep Oct Mov

date date



Mumber of Favs (Log-scale)
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Mr. Trump is likely to receive more
favorites on plain tweets,

while Ms. Clinton receives more on
tweets with photos/videos



How Hashtags are Effective?

§ = Mr. Trump favors hashtagging
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Mumber of Favs (Log-scale)
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data
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Better to repeat same hashtags?

Top 15 frequently used tags VS Top 15 Effective tags
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Hillary Clinton

Top 15 frequently used tags VS Top 15 Effective tags
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What are they tweeting?
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Mr Trump’s 10 most
frequently used words

time -
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plan-

Ms Clinton’s 10 most
frequently used words

election-

trump's-

people-

america-

vote-

president-

donald-

hillary -

trump-
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Times mentioned per week

Candidates Mentioning
Each Other

[ 1 Election week
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Times mentioned per week

Candidates Mentioning

Themselves
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Interesting Statistics

@realDonaldTrump @HillaryClinton
21.65% of tweets 34.35% of tweets mention
mention Clinton Trump

6.47% of tweets 14.43% of tweets mention

mention himself herself



Interesting Statistics

When @HillaryClinton mentioned @realDonaldTrump she got

6,525 favourites per tweet

When @realDonaldTrump mentioned @HillaryClinton he got

29,258 favourites per tweet



Sentiment
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57% negative
emotions



Sentiment

Emotions - Ms. Clinton
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Typo Hunting

e On average people will have 4 mistakes per 100 words [1,2]
e Assuming binomial distribution (each word can have a typo) with

P =0.04,
Expected number of typos in 3200 tweets is 128 (sd = 11.09)

e How often would presidential candidates make spelling errors?

[1] Matias, E., MacKenzie, I. S., & Buxton, W. (1996)
[2] https://analytics.twitter.com



Caveat: how to find spelling errors?

1. Remove all URLs, hashtags and usernames from the tweets

2. Acquire large dictionary (we used list of 30,000 words on Google's “Project
Gutenberg”

3. Find Levenshtein distance between tweet t, and each dictionary word s:
measure of the similarity between two strings

number of deletions, insertions, or substitutions required to transform ¢
into s



Null Hypothesis:

Each user will have between 95-161 typos in 3200 tweets
(i.e. # of typos will be within 3SD of u=128)

Reality

Neither Ms. Clinton, nor Mr. Trump had any typos

(p =0
— we reject the null hypothesis



When is Trump tweeting?



30 days prior to election 30 days after election
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Tweet timestamps, 511 in total Tweet timestamps, 132 in total

Densities of tweet timestamps before
and after election - over 30 day window.



Days 20 - 30 before Nov8 Days 20 - 30 after Nov3

Densities of tweet
timestamps before and =
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Tweet timestamps, 183 in total Tweet timestamps, 60 in total



30 days prior to election 30 days prior to election
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Conclusions

e Harder to interpret than we thought

o Small amount of tweets post-election
o Tweeting behaviour might not be as predictable as we thought

e What we would do next?

o Compare word distribution from different sources
o Can we use them to predict authorship?

m Can we find whether the candidate’s PA is tweeting for them?
o Can we use sentiment analysis to predict important events?



