Math 40 Probability and Statistical Inference Homework 01

Winter 2021
Instructor: Yoonsang Lee (Yoonsang.Lee@dartmouth.edu)

Due Jan 19, 2021 11:59 pm (EDT)

Do the following exercises of the textbook. Show all steps to get your answers. Specify the problems you discussed with other students (including names).

5 points for each problem.

1. 1.3.2 (in this problem, you do not need to explain your answer) Express p_{i} (the probability of having $X=x_{i}$) in terms of cdf (cumulative distribution function)
2. 1.4.1 Introduce a function $M(a)=E\left[(X-a)^{2}\right]$. (a) Express this function through var and μ (the mean). (b) Prove that this function takes the minimal value at $a=\mu$. (c) Find the minimum of M.
3. 1.6.1 Derive the formula $\sum_{m=0}^{n}\binom{n}{m}=2^{n}$ from the binomial probability

$$
\operatorname{Pr}(X=m)=\binom{n}{m} p^{m}(1-p)^{n-m} .
$$

4. 1.6.6 Sixteen players of two genders sign up for a tournament. What is the probability that there will be eight men and women? Provide a theoretical answer and confirm via simulations (simulation is optional).
5. 1.6.8 The chance that a person will develop lung cancer in his/her lifetime is about 1 in 15. What is the probability that in a small village with 100 people, (a) there are no individuals with lung cancer, and (b) there is only one case? (Optional) in both cases check your answer with simulations.
6. 1.7.3 Assume that the number of children in the family follows a Poisson distribution with $\lambda=2.4$. Find the minimum number of toys that ensures each child gets a toy with probability 99\%.
7. 1.7.5 Prove that for the Poisson distribution, $\operatorname{var}(X)=\lambda$ using the formula $\sigma^{2}=E\left(X^{2}\right)-\mu^{2}$.
8. $1.7 .910 \%$ of families have no children. Assuming that the number of children in the family follows a Poisson distribution, estimate the average number of children in the family.
9. 1.7.10 What is the probability that a randomly chosen family with the number of children two or more has children of the same gender? [Hint: Assume a Poisson distribution and use conditional probability].
10. 1.7.13 The number of children in the family follows a Poisson distribution with $\lambda=1.8$. Six families with kids are invited to a birthday party. What is the probability that more than 15 kids come to the party. Give the answer under two scenarios: (a) family brings all kids they have, and (b) the probability that they bring a child is 0.8 . (optional) Write a simulation program to check your answer.
