Math 40 Probability and Statistical Inference Homework 04

Winter 2021
Instructor: Yoonsang Lee (Yoonsang.Lee@dartmouth.edu)

Due Feb 8, 2021 11:59 pm (EDT)

Do the following exercises of the textbook. Show all steps to get your answers. Specify the problems you discussed with other students (including names).

5 points for each problem.

1. 3.1.5 Describe a bivariate random variable that has $\operatorname{cdf} H(x, y)=\max (0, x) \times \max (0, y)$ for $x<1$ and $y<1$, and 1 elsewhere.
2. 3.1. 7 Let $G(x, y)$ and $H(x, y)$ be bivariate cdfs. Is $F(x, y)=\lambda G(x, y)+(1-\lambda) H(x, y)$ a cdf $(0 \leq \lambda \leq 1)$? Answer this question by reducing to bivariate density.
3. 3.2.7 Following the derivation in Example 3.9, express $\operatorname{Pr}(X>Y+1)$ in terms of f and F.
4. 3.2.17 Find the distribution and the density function of the sum of three independent random variables uniformly distributed on $(0,1)$.
5. 3.2.19 Random variables X and Y are independent and uniformly distributed on $(0,1)$. Find the cdf of $Z=X /(X+Y)$. Hint: use a geometric approach.
6. (modified version of example 3.18) The probability that team A loses against team B is 0.6 and the probability that team C wins against team A is 0.7 . What is the probability that team C loses against team B ?
7. 3.3.8 The bivariate distribution is defined as the marginal pdf $X \sim \mathcal{E}(\lambda)$ and conditional pdf $Y \mid X=x \sim \mathcal{E}(\eta \lambda)$ for contants $\lambda, \eta>0$. Find the joint density and $E(X \mid Y=y)$.
8. 3.3.13 Erica tosses a fair coin n times and Fred tosses $n+1$ times. Prove that Fred gets more heads than Erica with probability 0.5 using the rule of repeated expectation.
9. 3.3.19 Random variables X and Y are uniformly distributed on the half disk bounded by $\sqrt{1-x^{2}}$, where $|x|<1$. Predict Y given $X=x$ and derive the conditional standard deviation of the prediction (this problem is NOT asking the standard deviation of Y given $X=x$).
10. 3.3.22 Prove that $\operatorname{Var}(E(Y \mid X)) \leq \operatorname{Var}(Y)$. What is your interpretation of this result? Discuss your interpretation in terms of data science (I will not take any questions about this problem).
