Math 40 Probability and Statistical Inference Winter 2021

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Examples of continuous random variables

Uniform (section 2.3)

- $ightharpoonup X \sim \mathcal{R}(a,b)$ or Uniform(a,b).
- ▶ pdf $f(x) = \frac{1}{b-a}, x \in (a, b).$

Exponential (section 2.4)

- Waiting time or survival analysis
- ► $X \sim \mathcal{E}(\lambda)$, λ : rate.
- $\triangleright \mathsf{cdf} \; F(x; \lambda) = 1 e^{-\lambda x}.$
- \blacktriangleright $E(X) = \frac{1}{\lambda}$ and $Var(X) = \frac{1}{\lambda}^2$.
- An interpretation of F(x): probability of death by time x.
- ► S(x) = 1 F(x) survival function: probability of survival until x.
- ► $H(x) = \frac{-S'(x)}{S(x)}$ hazard function: instantaneous relative mortality

Exponential (section 2.4)

Example 2.16 Waiting for a call from Bill starting from 10 am. If the call follows an exponential distribution with $\lambda=1/10$, (a) Probability of having a call between 10:00 am to 10:10 am (b) Probability of having a call between 10:10 am to 11:00 am.

Laplace (or double exponential) (section 2.4.1)

- $ightharpoonup X \sim \mathcal{L}(\lambda).$
- $\mathsf{cdf} \ F(x;\lambda) = \begin{cases} \frac{\lambda}{2} e^{\lambda x}, & \text{if } x < 0\\ 1 \frac{\lambda}{2} e^{\lambda x} & \text{if } x \ge 0 \end{cases}$
- has many applications in sparse reconstruction.

Gamma distribution (section 2.6)

- ► $X \sim \mathcal{G}(\alpha, \lambda)$, α : shape, λ : rate.
- ▶ When $\alpha \in \mathbb{N}$, X is the sum of α independent exponential distributions of the same rate λ .
- $f(x; \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha 1} e^{-\lambda x}, x > 0$
- ightharpoonup $\Gamma(lpha)=\int_0^\infty u^{lpha-1}e^{-u}du,\ lpha>0$ satisfying
 - 1. $\Gamma(1) = \Gamma(2) = 1$
 - 2. $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$
 - 3. $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$
 - 4. $\Gamma(0.5) = \sqrt{\pi}$
- $\blacktriangleright E(X) = \frac{\alpha}{\lambda}, \ Var(X) = \frac{\alpha}{\lambda^2}$

Relationship between Poisson and Gamma

$$\textit{X} \sim \textit{Poisson}(\lambda)$$
 and $\textit{Y} \sim \Gamma(\alpha, \lambda)$

$$F_{poisson}(\alpha - 1; \lambda) = 1 - F_{gamma}(1; \alpha, \lambda)$$

Beta distributions (section 2.14)

- $ightharpoonup X \sim \mathcal{B}(\alpha, \beta), \ \alpha, \beta$: shape
- ▶ pdf $f(x; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} x^{\alpha 1} (1 x)^{\beta 1}, 0 < x < 1, \alpha > 0, \beta > 0$
- ► Here $B(\alpha, \beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} dx = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$
- $\blacktriangleright E(X) = \frac{\alpha}{\alpha + \beta}, \ Var(X) = \frac{\alpha\beta}{(\alpha + \beta + 1)(\alpha + \beta)^2}$
- ▶ Relationship between Beta and Binomial

$$\int_0^p f(x; k, n-k+1) dx = 1 - \sum_{m=0}^{k-1} \binom{n}{m} p^m (1-p)^{n-m}$$