Math 40 Probability and Statistical Inference Winter 2021

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Normal and lognormal distributions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

•
$$X \sim \mathcal{N}(\mu, \sigma^2)$$

• pdf $\phi(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$
• $E(X) = \mu, Var(X) = \sigma^2$
• Standard normal if $\mu = 0$ and $\sigma^2 = 1$
• Standard normal pdf $\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}$
• Standard normal cdf $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}t^2} dt$
• cdf of $\mathcal{N}(\mu, \sigma^2) = \Phi(\frac{x-\mu}{\sigma})$.

MGF of the standard normal (Example 2.31)

$$M(t)=e^{\frac{t^2}{2}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 2.32 The rule of two sigma. Compute the probability $Pr(|X - \mu| < 2\sigma)$, where $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 1$ and $\sigma = \sqrt{2}$.

Example 2.34 Volume of the ball. The radius of a ball is $\rho=2.5$ cm, but it is measured with error $\sigma=0.001$ cm. Assuming that the measurement is normally distributed, find the probability that the volume of the ball

1. is greater than the nominal volume $(4/3)\pi\rho^3=65.45 {\rm cm}^3$ and

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2. is within ± 0.01 of the nominal volume.
- 3. Is an estimator of the volume, $(4/3)\pi \overline{r}^3$, where \overline{r} is an unbiased normally distributed measurement of the radius, unbiased?

Example 2.32 The rule of two sigma. Compute the probability $Pr(|X - \mu| < 2\sigma)$ where $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 1$ and $\sigma = \sqrt{2}$ using the **pnorm** function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example 2.34 Volume of the ball. The radius of a ball is $\rho = 2.5$ cm, but it is measured with error $\sigma = 0.001$ cm. Assuming that the measurement is normally distributed, find the probability that the volume of the ball (i) is greater than the nominal volume $(4/3)\pi\rho^3 = 65.45$ cm³ and (ii) is within ± 0.01 of the nominal volume. (iii) Is an estimator of the volume, $(4/3)\pi\overline{r}^3$, where \overline{r} is an unbiased normally distributed measurement of the radius, unbiased?

(日)((1))

Theorem 2.35 The expected value of the normal cdf can be expressed in closed form as

$$E_{X \sim \mathcal{N}(\mu, \sigma^2)} \Phi(X) = \Phi\left(rac{\mu}{\sqrt{1 + \sigma^2}}
ight)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition 2.37 A continuous distribution on $(-\infty,\infty)$ is called skew-normal if its density is defined as

$$f(x; \mu, \sigma^2, \lambda) = \frac{2}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right) \Phi\left(\lambda \frac{x-\mu}{\sigma}\right)$$

We will use this distribution in statistics to model a skewed distribution.

Prove that Y^2 has a gamma distribution if $Y \sim \mathcal{N}(0, 1)$. Find α and λ .

Prove that Y^2 has a gamma distribution if $Y \sim \mathcal{N}(0, 1)$. Find α and λ . pdf $f(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}$

Prove that Y^2 has a gamma distribution if $Y \sim \mathcal{N}(0, 1)$. Find α and λ . pdf $f(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}$ pdf of $gamma(\alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$. Note $\Gamma(1/2) = \sqrt{\pi}$

Prove that Y^2 has a gamma distribution if $Y \sim \mathcal{N}(0, 1)$. Find α and λ . pdf $f(x) = \frac{1}{\sqrt{2\pi}} x^{-1/2} e^{-x/2}$ pdf of $gamma(\alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$. Note $\Gamma(1/2) = \sqrt{\pi}$ check Example 4.18

Prove that for a fixed $\tau > 0$, $Pr(|X - a| < \tau)$ takes maximum when $a = \mu$ where $X \sim \mathcal{N}(\mu, \sigma^2)$.

Lognormal distributions (section 2.11)

$$X = e^{U} \text{ where } U \sim \mathcal{N}(\mu, \sigma^{2})$$

$$pdf f(x; \mu, \sigma^{2}) = \frac{1}{x\sqrt{2\pi\sigma^{2}}} e^{-\frac{1}{2\sigma^{2}}(\ln x - \mu)^{2}}, x > 0$$

$$cdf F(x; \mu, \sigma^{2}) = \Phi\left(\frac{\ln x - \mu}{\sigma}\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ