Math 40 Probability and Statistical Inference Winter 2021

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

Lecture 7: Transformations and the delta method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Transformations (2.12)

Goal For a known random variable X, we want to find the distribution of Y = g(X), a transformation of X. **Example** $Y = X^2$ where $X \sim \mathcal{N}(\mu, \sigma^2)$, the χ^2 distribution (cf. Exercise 2.7.4, Example 4.18) **Our approach** *Find the cdf of the transformed random variable*

Our approach *Find the cdf of the transformed random variable.* If you want the density, take the derivative of the cdf.

1.
$$F_Y(Y \leq y) = Pr(Y \leq y)$$

2. Represent the right hand side as a probability of X,

$$Pr(Y \leq y) = Pr(g(X) \leq y)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

3. The density of Y, $f_Y(y)$, is given by $\frac{dF_Y(y)}{dy}$. Note If g is invertible, $f_Y(y) = \frac{1}{|g'(y)|} f_X(g^{-1}(y))$.

Example 2.62 Find the cdf and density of the squared uniform distribution $\mathcal{R}(0, 1)$. That is, find the distribution of $Y = X^2$ where $X \sim \mathcal{R}(0, 1)$.

Example 2.62 Find the cdf and density of the squared uniform distribution $\mathcal{R}(0, 1)$. That is, find the distribution of $Y = X^2$ where $X \sim \mathcal{R}(0, 1)$. **Solution** cdf: $F_Y(y) = Pr(Y \le y) = Pr(X^2 \le y)$ $= Pr(-\sqrt{y} \le X \le \sqrt{y}) = Pr(0 \le X \le \sqrt{y}) = \sqrt{y}$

Example 2.62 Find the cdf and density of the squared uniform distribution $\mathcal{R}(0, 1)$. That is, find the distribution of $Y = X^2$ where $X \sim \mathcal{R}(0, 1)$. **Solution** cdf: $F_Y(y) = Pr(Y \le y) = Pr(X^2 \le y)$ $= Pr(-\sqrt{y} \le X \le \sqrt{y}) = Pr(0 \le X \le \sqrt{y}) = \sqrt{y}$ pdf: $f_Y(y) = \frac{d\sqrt{y}}{dy} = \frac{1}{2\sqrt{y}}$

Example 2.63 Find the cdf and the density of $Y = X^2$ where $X \sim \mathcal{N}(\mu, \sigma^2)$.

Example 2.63 Find the cdf and the density of $Y = X^2$ where $X \sim \mathcal{N}(\mu, \sigma^2)$. **Solution** cdf: $F_Y(y) = Pr(Y \le y) = Pr(X^2 \le y)$ $= Pr(-\sqrt{y} \le X \le \sqrt{y}) = \Phi\left(\frac{\sqrt{y}-\mu}{\sigma}\right) - \Phi\left(\frac{-\sqrt{y}-\mu}{\sigma}\right)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Example 2.63 Find the cdf and the density of $Y = X^2$ where $X \sim \mathcal{N}(\mu, \sigma^2)$. **Solution** cdf: $F_Y(y) = Pr(Y \le y) = Pr(X^2 \le y)$ $= Pr(-\sqrt{y} \le X \le \sqrt{y}) = \Phi\left(\frac{\sqrt{y}-\mu}{\sigma}\right) - \Phi\left(\frac{-\sqrt{y}-\mu}{\sigma}\right)$ pdf: $f_Y(y) = \frac{d\sqrt{y}}{dy} = \frac{1}{2\sigma\sqrt{y}}\phi\left(\frac{\sqrt{y}-\mu}{\sigma}\right) + \frac{1}{2\sigma\sqrt{y}}\phi\left(\frac{-\sqrt{y}-\mu}{\sigma}\right)$

Example 2.66 Find the normalizing transformation of the uniform distribution on (0,1). That is, find the transformation Z = g(Y), $Y \sim \mathcal{R}(0,1)$, such that the distribution of Z is a normal distribution.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example 2.66 Find the normalizing transformation of the uniform distribution on (0,1). That is, find the transformation Z = g(Y), $Y \sim \mathcal{R}(0,1)$, such that the distribution of Z is a normal distribution.

Solution (without using ODE) In HW2 #1, we saw that Y = F(Z) is uniform. If Z is the standard normal, $F(Z) = \Phi(Z)$, and thus $Z = \Phi^{-1}$ transforms the uniform distribution Y into the standard normal. Therefore, we have $g = \Phi^{-1}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example 2.67 Find the normalizing transformation of the exponential distribution with the rate parameter λ . That is, find g such that Y = g(X) becomes a normal distribution where $X \sim \mathcal{E}(\lambda)$.

Example 2.67 Find the normalizing transformation of the exponential distribution with the rate parameter λ . That is, find g such that Y = g(X) becomes a normal distribution where $X \sim \mathcal{E}(\lambda)$.

Solution (without using ODE; exercise 2.12.8)

1.
$$Y = F(X)$$
 is uniform (HW2 #1).

- 2. From the previous example, $Z = \Phi^{-1}(Y)$ is the standard normal.
- 3. So, we have $Z = g(X) = \Phi^{-1}(F(X))$ where F is the cdf of the exponential distribution with λ . That is,

$$g(X) = \Phi^{-1}(1 - e^{-\lambda X}).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

For Y = g(X), what can we say about the variance of Y in terms of the variance of X?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

For Y = g(X), what can we say about the variance of Y in terms of the variance of X?

$$\sigma_Y^2 \approx |g'(\mu)|^2 \sigma_X^2$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

where $\mu = E[X]$.

Example 2.68 The radius of the circle is measured with 1% error (i.e. the standard deviation is $0.01 \times \mu$ where μ is the true radius value). What percentage measurement error does it imply for the area?

Example 2.68 The radius of the circle is measured with 1% error (i.e. the standard deviation is $0.01 \times \mu$ where μ is the true radius value). What percentage measurement error does it imply for the area?

Solution $A = g(R) = \pi R^2$. Therefore

$$\sigma_A = |g'(\mu)|\sigma_R = 2\pi\mu imes 0.01 imes \mu = 0.02 imes \pi\mu^2$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

As $\pi\mu^2$ is the true area value, we conclude that the relative measurement error is 2%.