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Lecture 9-1: Conditional Density (3.3)



Conditional Density (3.3)

Doing data science is related to estimating a conditional density.
That is, by knowing about a random variable Y, we want to make
a better (in some sense) estimation of X. This process can be
done by knowing the conditional density of X by Y

p(X|Y)



Conditional Density (3.3)

Example 3.19 The exponential distribution is memoryless. Let
random variable X have an exponential distribution. Prove that
Pr(X > s+ t|X >s) = Pr(X > t), where s and t are positive
numbers.



Conditional Density (3.3)

Example 3.19 The exponential distribution is memoryless. Let
random variable X have an exponential distribution. Prove that
Pr(X > s+ t|X >s) = Pr(X > t), where s and t are positive
numbers.
Solution

Pr(X >s+tand X >s) Pr(X>s+t)

PriX > s+tlX > s) = Pr(X >s)  Pr(X >s)

= —eM=Pr(X>1t)



Conditional Density (3.3)

Example 3.22 Bayes formula. The joint distribution of (X, Y) is
defined through the conditional density of Y given X and marginal
density of X. Find the conditional density of X given Y.
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Conditional mean and variance (3.3.1)

A regression describes a relationship between two random
variables, X and Y. The conditional mean of Y given X, E[Y|X]
is related to a regression function, say u(x), (under some
condition) in describing Y given X.

» The conditional mean of Y given X

o0

u(x) = E[Y|X = x] = / Yhyix(v)dy.

» The conditional variance of Y given X
Var(Y|X = x) = E[(Y — u(x))*X = x)

= E[Y?|X = x) — E°[Y|X = x]

Note If X and Y are independent, there are simple structures for
the conditional mean and variance (they are constants; check
Theorem 3.24).



Conditional mean and variance (3.3.1)

Example 3.26 Regression is an optimal predictor Show that the
conditional mean/regression, E[Y|X = x] = u(x), is the optimal
predictor of Y given X = x.

The minimum is attained when ¢ = u(x) = E[Y|X = x].



Conditional mean and variance (3.3.1)

Example 3.26 Regression is an optimal predictor Show that the
conditional mean/regression, E[Y|X = x] = u(x), is the optimal
predictor of Y given X = x.

Solution For an unknown value ¢ depending on x (thus c is in fact
a function of x), we have

EI(Y — )X = x] = EI(Y — u(x) + u(x) — ¢)2IX = x]
— E[(Y — n(x))?X = x]+ 2E[(Y — p(x))(a(x) - )] + (u(x) — c)?
= E[(Y — 101X = x] + (u(x) - c)?

The minimum is attained when ¢ = p(x) = E[Y|X = x].



Conditional mean and variance (3.3.1)

Example 3.26

>
>
>

What is the meaning of this example?

It says ¢ = E[Y|X = x] minimizes E[(Y — ¢)?|X = x].

If we interpret ¢ as a predictor of Y given X, Y — c is the
error of c.

E[(Y — c)?|X = x] is the expected square of the error given
X. Thus, the conditional mean E[Y|X = x| has the minimum
expected squared error.



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor ¢ that minimizes
the expected squared error E[(Y — ¢)?]? (there is no conditioning).
Surprisingly, your predictor ¢ must be E[Y|X].

The left hand side is minimized if the inner term of the right hand
side is minimized for each X.



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor ¢ that minimizes
the expected squared error E[(Y — ¢)?]? (there is no conditioning).
Surprisingly, your predictor ¢ must be E[Y|X].
Why? Theorem 3.27 says E[Y] = Ex[E[Y|X]]. The same rule
applies to

EL(Y — €] = Ex[E[(Y — c)2IX]

The left hand side is minimized if the inner term of the right hand
side is minimized for each X.

Take-home message Throughout the course, we will focus on
calculating the conditional expected value of Y, E[Y|X = x] (aka
regression function), as the predictor of Y with the minimum
expected squared error.



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor ¢ that minimizes
the expected squared error E[(Y — ¢)?]? (there is no conditioning).
Surprisingly, your predictor ¢ must be E[Y|X].
Why? Theorem 3.27 says E[Y] = Ex[E[Y|X]]. The same rule
applies to

EL(Y — €] = Ex[E[(Y — c)2IX]

The left hand side is minimized if the inner term of the right hand
side is minimized for each X.

Take-home message Throughout the course, we will focus on
calculating the conditional expected value of Y, E[Y|X = x] (aka
regression function), as the predictor of Y with the minimum
expected squared error.

Note If X and Y are independent, the conditional expected value
E[Y|X = x] is a constant. That is, any information of X does not
provide any new information for Y.



Conditional mean and variance (3.3.1)

» Regarding the variance, we have the following result (called
Variance Decomposition)

Var(Y) = E(Var(Y|X)) + Var(E(Y|X))

where Var(E(Y|X)) is called explained variance while
E(Var(Y|X)) is called unexplained (or residual) variance.

» The unexplained variance is related to the error using E[Y'|X]
as a predictor of Y given X.

» Coefficient of determination (or variation)

2 Var(E(Y[X)
Var(Y)

represents the proportion of the variation explained by the
predictor.



Conditional mean and variance (3.3.1)

Example 3.35 Bivariate Bernoulli distribution. Let Y and X be
two Bernoulli random variables, distributed as specified by the
2 x 2 elementary probability table:

Pr(X=0,Y =0)=poo, Pr(X=0,Y=1)=po

Pr(X=1,Y =0)=p, Pr(X=1,Y=1)=py

Find the conditional mean E[Y|X = x] where x =0 or 1.



Conditional mean and variance (3.3.1)

Example 3.35 Bivariate Bernoulli distribution. Let Y and X be
two Bernoulli random variables, distributed as specified by the
2 x 2 elementary probability table:

Pr(X=0,Y =0)=poo, Pr(X=0,Y=1)=po

Pr(X=1,Y =0)=p, Pr(X=1,Y=1)=py

Find the conditional mean E[Y|X = x] where x =0 or 1.

Solution
E[Y|X =1] = _pu
P10 + p11
E[Y|X = 0] = 2

Poo + Po1



Conditional mean and variance (3.3.1)

Example 3.35 Let's do some explicit calculations.
Case 1 If

Pr(X=0,Y=0)=poo=1/4, Pr(X=0,Y=1)=po =1/4

Pr(X:1,Y:0):p10:1/4, PF(X:1,Y:1)ZP11:1/4,

do you believe that knowing the outcome of X is useful to know

about Y7



Conditional mean and variance (3.3.1)

Example 3.35 Let's do some explicit calculations.
Case 1 If

Pr(X=0,Y=0)=poo=1/4, Pr(X=0,Y=1)=po =1/4

Pr(X:1,Y:0):p10:1/4, PF(X:1,Y:1)ZP11:1/4,
do you believe that knowing the outcome of X is useful to know
about Y7
1
E[Y|X =1]= —P2 2
pio+pi1 2
1
2

[E[Y|X = 0] = —P% _ —
Poo + Po1



Conditional mean and variance (3.3.1)

Example 3.35 Let's do some explicit calculations.
Case 2 If

Pr(X =0,Y =0)=pp =5/12, Pr(X=0,Y =1)=po = 1/12

Pr(X=1,Y=0)=pio=1/12, Pr(X=1,Y =1)=p;; =5/12,

do you believe that knowing the outcome of X is useful to know
about Y7



Conditional mean and variance (3.3.1)

Example 3.35 Let's do some explicit calculations.
Case 2 If

Pr(X =0,Y =0)=pp =5/12, Pr(X=0,Y =1)=po = 1/12

Pr(X=1,Y=0)=pio=1/12, Pr(X=1,Y =1)=p;; =5/12,

do you believe that knowing the outcome of X is useful to know
about Y7

E[y|X =1 =P _2
pio+p1i1 6

1
E[Y|X=0=_P* _=
poo +por 6



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?
Case 1: Var(Y) =1/4, Var(E(Y|X)) =0. Thus, p> =0



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?

Case 1: Var(Y) =1/4, Var(E(Y|X)) =0. Thus, p> =0

Case 2: Var(Y) =1/4, Var(E(Y|X)) = 1/9. Thus, p> = 4/9.



Mixture distribution and Bayesian statistics (3.3.2)

» Let f(x) be the density of the height of all people at
Dartmouth.

» Also, let f(x|Y = w) be the density of the height of all
women at Dartmouth while f(x|Y = m) is the density of the
height of all men at Dartmouth.

» Thus, the two random variables X and Y are height and
gender.

» If we let p= Pr(Y = w), then from the law of total
probability, we have

f(x) = pf(x|Y = w) + (1 = p)f(x]Y = m),

which is a mixture density.



Mixture distribution and Bayesian statistics (3.3.2)

By knowing the height of a person, is it possible to classify the
gender of the person?



Mixture distribution and Bayesian statistics (3.3.2)

By knowing the height of a person, is it possible to classify the
gender of the person?
Not perfect, but there is a way. It is called Bayesian classifier.

pPr(X =x|Y = w)
pPr(X =x|Y =w)+ (1 - p)Pr(X = x|Y = m)

Pr(Y =w|X =x) =

Similarly,

(1—-p)Pr(X =x|Y =m)
pPr(X =x|Y =w)+ (1 — p)Pr(X = x|Y = m)

Pr(Y =m|X =x) =



Mixture distribution and Bayesian statistics (3.3.2)
Example 3.37 f(x|Y = w) = ¢(*32*) and

f(x|Y = m) = ¢(*52). Also p = 0.5.
If the height of a person is 68, the probability of being a man is

%¢(68170)
%¢(68270) + %¢( 68564)
If X = 67.1, the probability of being a man is 0.5 (check the

textbook regarding how to get this value). If X > 67.1, we expect
that the person is a man.

Pr(Y = m|X = 68) = =0.62




Homework

Read sections 3.3.3 and 3.3.4.



