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Lecture 9-1: Conditional Density (3.3)



Conditional Density (3.3)

Doing data science is related to estimating a conditional density.
That is, by knowing about a random variable Y , we want to make
a better (in some sense) estimation of X . This process can be
done by knowing the conditional density of X by Y

p(X |Y )



Conditional Density (3.3)

Example 3.19 The exponential distribution is memoryless. Let
random variable X have an exponential distribution. Prove that
Pr(X > s + t|X > s) = Pr(X > t), where s and t are positive
numbers.



Conditional Density (3.3)

Example 3.19 The exponential distribution is memoryless. Let
random variable X have an exponential distribution. Prove that
Pr(X > s + t|X > s) = Pr(X > t), where s and t are positive
numbers.
Solution

Pr(X > s+t|X > s) =
Pr(X > s + t and X > s)

Pr(X > s)
=

Pr(X > s + t)

Pr(X > s)

=
e−λ(s+t)

e−λs
= e−λt = Pr(X > t)



Conditional Density (3.3)

Example 3.22 Bayes formula. The joint distribution of (X ,Y ) is
defined through the conditional density of Y given X and marginal
density of X . Find the conditional density of X given Y .

fX |Y=y (x) =
fY |X=x(y)fX (x)

fY (y)

=
fY |X=x(y)fX (x)∫
fY |X=x(y)fX (x)dx



Conditional mean and variance (3.3.1)

A regression describes a relationship between two random
variables, X and Y . The conditional mean of Y given X , E [Y |X ]
is related to a regression function, say µ(x), (under some
condition) in describing Y given X .

I The conditional mean of Y given X

µ(x) = E [Y |X = x ] =

∫ ∞
−∞

yfY |X (y)dy .

I The conditional variance of Y given X

Var(Y |X = x) = E [(Y − µ(x))2|X = x)

= E [Y 2|X = x)− E 2[Y |X = x ]

Note If X and Y are independent, there are simple structures for
the conditional mean and variance (they are constants; check
Theorem 3.24).



Conditional mean and variance (3.3.1)

Example 3.26 Regression is an optimal predictor Show that the
conditional mean/regression, E [Y |X = x ] = µ(x), is the optimal
predictor of Y given X = x .
The minimum is attained when c = µ(x) = E [Y |X = x ].



Conditional mean and variance (3.3.1)

Example 3.26 Regression is an optimal predictor Show that the
conditional mean/regression, E [Y |X = x ] = µ(x), is the optimal
predictor of Y given X = x .
Solution For an unknown value c depending on x (thus c is in fact
a function of x), we have

E [(Y − c)2|X = x ] = E [(Y − µ(x) + µ(x)− c)2|X = x ]

= E [(Y −µ(x))2|X = x ] + 2E [(Y −µ(x))(µ(x)− c)] + (µ(x)− c)2

= E [(Y − µ(x))2|X = x ] + (µ(x)− c)2

The minimum is attained when c = µ(x) = E [Y |X = x ].



Conditional mean and variance (3.3.1)

Example 3.26

I What is the meaning of this example?

I It says c = E [Y |X = x ] minimizes E [(Y − c)2|X = x ].

I If we interpret c as a predictor of Y given X , Y − c is the
error of c .

I E [(Y − c)2|X = x ] is the expected square of the error given
X . Thus, the conditional mean E [Y |X = x ] has the minimum
expected squared error.



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor c that minimizes
the expected squared error E [(Y − c)2]? (there is no conditioning).
Surprisingly, your predictor c must be E [Y |X ].
The left hand side is minimized if the inner term of the right hand
side is minimized for each X .



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor c that minimizes
the expected squared error E [(Y − c)2]? (there is no conditioning).
Surprisingly, your predictor c must be E [Y |X ].
Why? Theorem 3.27 says E [Y ] = EX [E [Y |X ]]. The same rule
applies to

E [(Y − c)2] = EX [E [(Y − c)2|X ]]

The left hand side is minimized if the inner term of the right hand
side is minimized for each X .
Take-home message Throughout the course, we will focus on
calculating the conditional expected value of Y , E [Y |X = x ] (aka
regression function), as the predictor of Y with the minimum
expected squared error.



Conditional mean and variance (3.3.1)

Here is another question. What is your predictor c that minimizes
the expected squared error E [(Y − c)2]? (there is no conditioning).
Surprisingly, your predictor c must be E [Y |X ].
Why? Theorem 3.27 says E [Y ] = EX [E [Y |X ]]. The same rule
applies to

E [(Y − c)2] = EX [E [(Y − c)2|X ]]

The left hand side is minimized if the inner term of the right hand
side is minimized for each X .
Take-home message Throughout the course, we will focus on
calculating the conditional expected value of Y , E [Y |X = x ] (aka
regression function), as the predictor of Y with the minimum
expected squared error.
Note If X and Y are independent, the conditional expected value
E [Y |X = x ] is a constant. That is, any information of X does not
provide any new information for Y .



Conditional mean and variance (3.3.1)

I Regarding the variance, we have the following result (called
Variance Decomposition)

Var(Y ) = E (Var(Y |X )) + Var(E (Y |X ))

where Var(E (Y |X )) is called explained variance while
E (Var(Y |X )) is called unexplained (or residual) variance.

I The unexplained variance is related to the error using E [Y |X ]
as a predictor of Y given X .

I Coefficient of determination (or variation)

ρ2 =
Var(E (Y |X ))

Var(Y )

represents the proportion of the variation explained by the
predictor.



Conditional mean and variance (3.3.1)

Example 3.35 Bivariate Bernoulli distribution. Let Y and X be
two Bernoulli random variables, distributed as specified by the
2× 2 elementary probability table:

Pr(X = 0,Y = 0) = p00, Pr(X = 0,Y = 1) = p01

Pr(X = 1,Y = 0) = p10, Pr(X = 1,Y = 1) = p11

Find the conditional mean E [Y |X = x ] where x = 0 or 1.



Conditional mean and variance (3.3.1)

Example 3.35 Bivariate Bernoulli distribution. Let Y and X be
two Bernoulli random variables, distributed as specified by the
2× 2 elementary probability table:

Pr(X = 0,Y = 0) = p00, Pr(X = 0,Y = 1) = p01

Pr(X = 1,Y = 0) = p10, Pr(X = 1,Y = 1) = p11

Find the conditional mean E [Y |X = x ] where x = 0 or 1.
Solution

E [Y |X = 1] =
p11

p10 + p11

E [Y |X = 0] =
p01

p00 + p01



Conditional mean and variance (3.3.1)

Example 3.35 Let’s do some explicit calculations.
Case 1 If

Pr(X = 0,Y = 0) = p00 = 1/4, Pr(X = 0,Y = 1) = p01 = 1/4

Pr(X = 1,Y = 0) = p10 = 1/4, Pr(X = 1,Y = 1) = p11 = 1/4,

do you believe that knowing the outcome of X is useful to know
about Y ?



Conditional mean and variance (3.3.1)

Example 3.35 Let’s do some explicit calculations.
Case 1 If

Pr(X = 0,Y = 0) = p00 = 1/4, Pr(X = 0,Y = 1) = p01 = 1/4

Pr(X = 1,Y = 0) = p10 = 1/4, Pr(X = 1,Y = 1) = p11 = 1/4,

do you believe that knowing the outcome of X is useful to know
about Y ?

E [Y |X = 1] =
p11

p10 + p11
=

1

2

[E [Y |X = 0] =
p01

p00 + p01
=

1

2



Conditional mean and variance (3.3.1)

Example 3.35 Let’s do some explicit calculations.
Case 2 If

Pr(X = 0,Y = 0) = p00 = 5/12, Pr(X = 0,Y = 1) = p01 = 1/12

Pr(X = 1,Y = 0) = p10 = 1/12, Pr(X = 1,Y = 1) = p11 = 5/12,

do you believe that knowing the outcome of X is useful to know
about Y ?



Conditional mean and variance (3.3.1)

Example 3.35 Let’s do some explicit calculations.
Case 2 If

Pr(X = 0,Y = 0) = p00 = 5/12, Pr(X = 0,Y = 1) = p01 = 1/12

Pr(X = 1,Y = 0) = p10 = 1/12, Pr(X = 1,Y = 1) = p11 = 5/12,

do you believe that knowing the outcome of X is useful to know
about Y ?

E [Y |X = 1] =
p11

p10 + p11
=

5

6

E [Y |X = 0] =
p01

p00 + p01
=

1

6



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?
Case 1: Var(Y ) = 1/4, Var(E (Y |X )) = 0. Thus, ρ2 = 0



Conditional mean and variance (3.3.1)

Example 3.35 For the case 1 and 2, what are the coefficients of
variation?
Case 1: Var(Y ) = 1/4, Var(E (Y |X )) = 0. Thus, ρ2 = 0
Case 2: Var(Y ) = 1/4, Var(E (Y |X )) = 1/9. Thus, ρ2 = 4/9.



Mixture distribution and Bayesian statistics (3.3.2)

I Let f (x) be the density of the height of all people at
Dartmouth.

I Also, let f (x |Y = w) be the density of the height of all
women at Dartmouth while f (x |Y = m) is the density of the
height of all men at Dartmouth.

I Thus, the two random variables X and Y are height and
gender.

I If we let p = Pr(Y = w), then from the law of total
probability, we have

f (x) = pf (x |Y = w) + (1− p)f (x |Y = m),

which is a mixture density.



Mixture distribution and Bayesian statistics (3.3.2)

By knowing the height of a person, is it possible to classify the
gender of the person?



Mixture distribution and Bayesian statistics (3.3.2)

By knowing the height of a person, is it possible to classify the
gender of the person?
Not perfect, but there is a way. It is called Bayesian classifier.

Pr(Y = w |X = x) =
pPr(X = x |Y = w)

pPr(X = x |Y = w) + (1− p)Pr(X = x |Y = m)

Similarly,

Pr(Y = m|X = x) =
(1− p)Pr(X = x |Y = m)

pPr(X = x |Y = w) + (1− p)Pr(X = x |Y = m)



Mixture distribution and Bayesian statistics (3.3.2)

Example 3.37 f (x |Y = w) = φ( x−643 ) and
f (x |Y = m) = φ( x−704 ). Also p = 0.5.
If the height of a person is 68, the probability of being a man is

Pr(Y = m|X = 68) =
1
2φ(68−704 )

1
2φ(68−704 ) + 1

2φ(68−643 )
= 0.62

If X = 67.1, the probability of being a man is 0.5 (check the
textbook regarding how to get this value). If X > 67.1, we expect
that the person is a man.



Homework

Read sections 3.3.3 and 3.3.4.


