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Correlation and linear regression (3.4)

In doing data science, we are interested in knowing about a
random variable using information of another random variable. In
doing so, the correlation between them plays an important role. In
this lecture, we focus on the correlation and its applications in
linear regression.
For two random variables, the covariance is defined as

cov(X ,Y ) = E [(X − µX )(Y − µY )]

Properties of the covariance

I cov(X ,X ) = Var(X )

I cov(X ,Y ) = cov(Y ,X )

I cov(X + a,Y ) = cov(X ,Y + b) = cov(X ,Y )

I cov(X ,Y + Z ) = cov(X ,Y ) + cov(X ,Z )

I cov(aX ,Y ) = a× cov(X ,Y ), cov(X , bY ) = b × cov(X ,Y )
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In doing data science, we are interested in knowing about a
random variable using information of another random variable. In
doing so, the correlation between them plays an important role. In
this lecture, we focus on the correlation and its applications in
linear regression.
For two random variables, the covariance is defined as

cov(X ,Y ) = E [(X − µX )(Y − µY )]

Properties of the covariance

I Var(X + Y ) = Var(X ) + 2cov(X ,Y ) + Var(Y )

I If X and Y do not correlate, then
Var(X + Y ) = Var(X ) + Var(Y )

I cov(X ,Y ) = E (XY )− µXµY = E (X (Y − µY )) =
E ((X − µX )Y )

I cov(X ,Y ) = 0 if X and Y are independent.
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The correlation coefficient is scaling invariant, which is defined as
below

ρ = cor(X ,Y ) =
cov(X ,Y )

std(X )std(Y )

Note Zero correlation does not imply independence. See example
3.43.
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Example 3.45 Coefficients of determination and correlation. On
page 174, we defined the coefficient of determination

ρ2(x) =
Var(E (Y |X ))

Var(Y )

We also have the correlation coefficient

ρ =
cov(X ,Y )

std(X )std(Y )

We consider X ∼ N (0, 1) and Y = 1− X 2. The coefficient of
determination is given by

ρ2(x) = 1

while the correlation coefficient ρ = 0. In this case, X and Y are
linearly uncorrelated, while they are nonlinearly dependent.
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In section 3.3, we were discussing the conditional mean as the
minimizer of E ((Y − c)2).
Let’s do a specific calculation. We assume that c takes the form of
a + bX where a and b are unknown constants. By taking the
derivatives with respect to a and b, and solve for a and b, we find
that

b =
E ((X − µX )(Y − µY )

E ((X − µX )2)
= ρ

σy
σx

and
a = µY − bµX

y = a + bX is called the least squares linear regression between Y
and X .



Correlation and linear regression (3.4)

Difference between the conditional expectation and the least
squares linear regression.
If you need to predict Y using X , what would you choose as a
predictor, E (Y |X ) or Y = a + bX?
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Difference between the conditional expectation and the least
squares linear regression.
If you need to predict Y using X , what would you choose as a
predictor, E (Y |X ) or Y = a + bX?
Y = a + bX is a special case of the conditional expectation (by
assuming a linear relation between X and Y ).
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Example 3.48 Variance decomposition and linear coefficient of
determination.
On p.174, Theorem 3.29 shows that

Var(Y ) = E (Var(Y |X )) + Var(E (Y |X ))

If E (Y |X ) = a + bX , then

Var(Y ) = E [(Y − E (Y |X ))2] + E [(µY − a− bX )2]

= E [(y − a− bX )2] + E [(bµX − bX )2]

= σ2 + ρ2σ2Y

where σ2 = E [(y − a− bX )2].
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Several remarks on Example 3.48

I Exercise 3.4.10 can be solved using Example 3.48.

I If there is a linear relation between X and Y , the coefficient
of determination is the square of the correlation coefficient.


