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Lecture 10: Bivariate Normal (3.5)



Bivariate normal distribution (3.5)

Now our random variable X has two components, X1 and X2. X is
called a bivariate random variable.
Let X1 and X2 have mean µ1 and µ2 and variances σ2
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respectively. We further assume that the correlation coefficient
between X1 and X2 is ρ.
The bivariate normal distribution of X = (X1,X2) is given by
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I If X1 and X2 are uncorrelated, then X1 and X2 are
independente (this fact holds for only bivariate normal
distributions)

I Principal axis and minor principal axis.



Bivariate normal distribution (3.5)

Example 3.54 Oil spill. An oil spill happened in the ocean. Gusty
wind and rough sea moves the oil spill toward the shore. The
distance covered in the x and y directions (meters per hour)
follows an exponential distribution with λ = 1/150 and λ = 1/100
with probability 3/5 and 1/2, respectively. Approximate the
probability that the oil spill does not reach the shoreline given by
the equation x + y = 3000 using the CLT.



Regression as conditional mean (3.5.1)

I Let Y and X follows a bivariate normal distribution with

mean (µy , µx) and covariance matrix

(
σ2
y ρσxσy

ρσxσy σ2
x

)
.

I We want to calculate the conditional expectation of Y given
X .

I Y |(X = x) ∼ N (µy + ρ
σy
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(x − µx), σ2

y |x) where
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I Thus, the conditional expectation is

E (Y |X = x) = µy + ρ
σy
σx

(x − µx)

which is the least squares linear regression.



Variance decomposition and coefficient of determination
(3.5.2)

We have seen the variance decomposition

Var(Y ) = E (Var(Y |X )) + Var(E (Y |X )).

In the case of a bivariate normal distribution,

I Var(Y ) = σ2
y

I E (Var(Y |X )) = σ2
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I Var(E (Y |X )) = Var(µy + ρ
σy

σx
(X − µx)) = σ2

yρ
2



Copula (3.5.4)

Goal: we know marginal distributions FX and FY . From this
information, we want to estimate the joint density of X and Y .

I Let φ(u, v ; ρ) = 1
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, the standard

bivariate normal with the correlation ρ.

I The copula cdf is given by

F (x , y ; ρ) =

∫ Φ−1(FX (x))

−∞

∫ Φ−1(FY (y))

−∞
φ(u, v ; ρ)dudv

where Φ is the univariate standard normal cdf.

I What about the coupla density? Take the derivatives with
respect to x and y , which yields

f (x , y ; ρ) =
φ(Φ−1(FX (x)),Φ−1(FY (y)); ρ)

φ(Φ−1(FX (x)))φ(Φ−1(FY (y)))
fX (x)fY (y)

Inverse function theorem: (f −1)′ = 1
f ′(f −1(b))

.


