Math 40 Probability and Statistical Inference Winter 2021

Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 11: Joint density upon transformation (3.6), Optimal portfolio allocation (3.8)

Joint density upon transformation (3.6)

Review of vector calculus
Let's assume that there is a map from $X=\left(X_{1}, X_{2}\right)$ to $Y=\left(Y_{1}, Y_{2}\right)$, that is,

$$
Y=h(X)
$$

or

$$
Y_{1}=h_{1}\left(X_{1}, X_{2}\right), Y_{2}=h_{2}\left(X_{1}, X_{2}\right)
$$

From vector calculus, we know that

$$
d y_{1} d y_{2}=\left|\operatorname{det}\left(\frac{\partial h}{\partial X}\right)\right| d x_{1} d x_{2}
$$

where $\frac{\partial h}{\partial X}$ is the Jacobian matrix of h

$$
\frac{\partial h}{\partial X}=\left(\begin{array}{ll}
\frac{\partial h_{1}}{\partial x_{1}} & \frac{\partial h_{1}}{\partial x_{2}} \\
\frac{\partial h_{2}}{\partial x_{1}} & \frac{\partial h_{2}}{\partial x_{2}}
\end{array}\right)
$$

Joint density upon transformation (3.6)

Review of vector calculus
If h is invertible, say $h^{-1}=g$, then

$$
X=g(Y)=\left(g_{1}\left(Y_{1}, Y_{2}\right), g_{2}\left(Y_{1}, Y_{2}\right)\right)
$$

and

$$
d x_{1} d x_{2}=\left|\operatorname{det}\left(\frac{\partial g}{\partial y}\right)\right| d y_{1} d y_{2}
$$

Joint density upon transformation (3.6)

Now, we have two bivariate random variables, X and Y, and we know the density of X, i.e., the joint density of X_{1} and X_{2}, say $f_{X}\left(x_{1}, x_{2}\right)$.
Then,
$\int f_{X}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int f_{X}\left(g_{1}\left(y_{1}, y_{2}\right), g_{2}\left(y_{1}, y_{2}\right)\right)\left|\operatorname{det}\left(\frac{\partial g}{\partial y}\right)\right| d y_{1} d y_{2}$
Thus, the probability density of $Y=\left(Y_{1}, Y_{2}\right)$ is given by

$$
f_{Y}\left(y_{1}, y_{2}\right)=f_{X}\left(g_{1}\left(y_{1}, y_{2}\right), g_{2}\left(y_{1}, y_{2}\right)\right)\left|\operatorname{det}\left(\frac{\partial g}{\partial y}\right)\right|
$$

Joint density upon transformation (3.6)

Example 3.62 (warning: your textbook has several typos) Joint density of sum and difference. Random variables X_{1} and X_{2} are iid with density $f(x)$. Find the joint density of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.

Joint density upon transformation (3.6)

Example 3.62 (warning: your textbook has several typos) Joint density of sum and difference. Random variables X_{1} and X_{2} are iid with density $f(x)$. Find the joint density of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.

- The map from Y to X, that is g in the previous slide, is

$$
g(Y)=\left(\frac{Y_{1}+Y_{2}}{2}, \frac{Y_{1}-Y_{2}}{2}\right)
$$

- The Jacobian matrix $\frac{\partial g}{\partial Y}$ is given by

$$
\left(\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right)
$$

- Therefore, $\left|\operatorname{det}\left(\frac{\partial g}{\partial Y}\right)\right|=\frac{1}{2}$

Joint density upon transformation (3.6)

Example 3.62 (warning: your textbook has several typos) Joint density of sum and difference. Random variables X_{1} and X_{2} are iid with density $f(x)$. Find the joint density of $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.

- The density of X is $f_{X}\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) f\left(x_{2}\right)$.
- $f_{X}\left(g_{1}\left(y_{1}, y_{2}\right), g_{2}\left(y_{1}, y_{2}\right)\right)=f\left(\frac{y_{1}+y_{2}}{2}\right) f\left(\frac{y_{1}-y_{2}}{2}\right)$
- Finally, we have

$$
f_{Y}\left(y_{1}, y_{2}\right)=\frac{f\left(\frac{y_{1}+y_{2}}{2}\right) f\left(\frac{y_{1}-y_{2}}{2}\right)}{2}
$$

Joint density upon transformation (3.6)

Example 3.63 Random variables X_{1} and X_{2} have independent exponential distributions with rate parameter λ_{1} and λ_{2}. Find the bivariate density of $Y_{1}=X_{1}$ and $Y_{2}=X_{2} /\left(a X_{1}\right)$ where $a>0$.

Joint density upon transformation (3.6)

Example 3.63 Random variables X_{1} and X_{2} have independent exponential distributions with rate parameter λ_{1} and λ_{2}. Find the bivariate density of $Y_{1}=X_{1}$ and $Y_{2}=X_{2} /\left(a X_{1}\right)$ where $a>0$.

- The map from Y to X, that is g, is

$$
g(Y)=\left(Y_{1}, a Y_{1} Y_{2}\right)
$$

- The Jacobian matrix $\frac{\partial g}{\partial Y}$ is given by

$$
\left(\begin{array}{cc}
1 & 0 \\
a y_{2} & a y_{1}
\end{array}\right)
$$

- Therefore, $\left|\operatorname{det}\left(\frac{\partial g}{\partial Y}\right)\right|=a y_{1}\left(\because y_{1}\right.$ is nonnegative $)$.

Joint density upon transformation (3.6)

Example 3.63 Random variables X_{1} and X_{2} have independent exponential distributions with rate parameter λ_{1} and λ_{2}. Find the bivariate density of $Y_{1}=X_{1}$ and $Y_{2}=X_{2} /\left(a X_{1}\right)$ where $a>0$.

- The density of $X, f_{X}\left(x_{1}, x_{2}\right)$, is $\lambda_{1} e^{-\lambda_{1} x_{1}} \lambda_{2} e^{-\lambda_{2} x_{2}}$.
- $f_{X}\left(g_{1}\left(y_{1}, y_{2}\right), g_{2}\left(y_{1}, y_{2}\right)\right)=\lambda_{1} \lambda_{2} e^{-\lambda_{1} y_{1}-\lambda_{2} a y_{1} y_{2}}$
- Finally, we have

$$
f_{Y}\left(y_{1}, y_{2}\right)=\lambda_{1} \lambda_{2} a y_{1} e^{-\lambda_{1} y_{1}-\lambda_{2} a y_{1} y_{2}}
$$

Optimal portfolio allocation (3.8)

- There are two random variables, X and Y, with the same mean μ but with different variances σ_{X}^{2} and σ_{Y}^{2} respectively.
- Q: By taking a combination of X and Y, that is, $\alpha X+(1-\alpha) Y$, is it possible to have a lower variance than σ_{X}^{2} and σ_{Y}^{2} ?
- If X and Y represent the returns of two different stocks, this decision process is related to a portfolio design. The expectation is the expected return of each stock, while the variance represents the volatility (or risk or uncertainty).
- The goal of the portfolio design is to minimize the volatility.

Optimal portfolio allocation (3.8)

- From the properties of variance and covariance,
$\operatorname{Var}(\alpha X+(1-\alpha) Y)=\alpha^{2} \sigma_{X}^{2}+2 \alpha(1-\alpha) \rho \sigma_{X} \sigma_{Y}+(1-\alpha)^{2} \sigma_{Y}^{2}$
where ρ is the correlation between X and Y.
- The optimal α that minimizes the variance is given by

$$
\alpha_{o p t}=\frac{\sigma_{Y}^{2}-\rho \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}-2 \rho \sigma_{X} \sigma_{Y}+\sigma_{Y}^{2}}
$$

- When $\alpha=\alpha_{\text {opt }}$, the minimum variance (or risk) is

$$
R_{\min }=\frac{\left(1-\rho^{2}\right) \sigma_{X}^{2} \sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \rho \sigma_{X} \sigma_{Y}}
$$

Optimal portfolio allocation (3.8)

If $\rho=0$, that is, X and Y are uncorrelated,

$$
\alpha_{o p t}=\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}}
$$

and

- the minimum variance (or risk) is

$$
R_{\min }=\frac{\sigma_{X}^{2} \sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}}
$$

Optimal portfolio allocation (3.8)

In fact, the minimum variance $R_{\text {min }}=\frac{\left(1-\rho^{2}\right) \sigma_{X}^{2} \sigma_{Y}^{2}}{\sigma_{X}^{2}+\sigma_{Y}^{2}-2 \rho \sigma_{X} \sigma_{Y}}$, as a function of ρ (this means, everything is known except ρ), is an increasing function.
This implies that a portfolio using negatively correlated stocks has a lower risk than other portfolios using uncorrelated or positively correlated stocks.

Optimal portfolio allocation (3.8)

If you are interested in the case when X and Y have different expected values, and a different interpretation of volatility, read section 3.8.3 and 3.8.4.

