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Multidimensional Random Vectors (3.10)

I In this lecture, we consider a random vector
X = (X1,X2, ...,Xm) of size m, where each Xi is a random
variable.

I The bivariate normal distribution (3.5) is an example of a
random vector in which each component is a normal
distribution.

I Linear Algebra (or Matrix Algebra) is useful to understand
random vectors. Please check the appendix (section 10.2) of
the textbook.

I As linear algebra is not a prerequisite of this course, I will not
ask questions directly related to linear algebra (but still useful
to better understand the materials in this course.



Multidimensional Random Vectors (3.10)

I As in the joint cdf case in section 3.1, the cdf of a random
vector X is defined as

F (x) = Pr(X1 ≤ x1,X2 ≤ x2, ...,Xm ≤ xm).

Note that x = (x1, x2, ..., xm) is a vector value.

I The pdf is defined as

f (x) =
∂mF (x)

∂x1∂x2 · · · ∂xm



Multidimensional Random Vectors (3.10)

I The mean of X is a vector,

µ = E (X) = (E (X1), ...,E (Xm)).

I How many pairs can you think out of (X1, ...,Xm)?

I The covariance matrix cov(X) is a m ×m matrix

cov(X) =


cov(X1,X1) cov(X1,X2) · · · cov(X1,Xm)
cov(X2,X1) cov(X2,X2) · · · cov(X2,Xm)

...
...

cov(Xm,X1) cov(Xm,X2) · · · cov(Xm,Xm)





Multidimensional Random Vectors (3.10)

I For two random vectors X and Y of the same size m, the
covariance matrix cov(X,Y) is defined as

cov(X,Y) =


cov(X1,Y1) cov(X1,Y2) · · · cov(X1,Ym)
cov(X2,Y1) cov(X2,Y2) · · · cov(X2,Ym)

...
...

cov(Xm,Y1) cov(Xm,Y2) · · · cov(Xm,Ym)


I X and Y are uncorrelated if cov(X,Y) = 0.



Multidimensional Random Vectors (3.10)

Several properties are in order.

I cov(X + Y) = cov(X) + cov(Y) if X and Y are uncorrelated.

X,Y, and Z are random vectors of the same size, and A and B are
fixed matrices while a and b are scalar values. (theorem 3.79)

I E (aX + bY) = aE (X) + bE (Y)

I E (AX + BY) = AE (X) + BE (Y)

I cov(X + Y,Z) = cov(X,Z) + cov(Y,Z)

I cov(AX) = Acov(X )A′

Also, the following results hold (theorem 3.83)

I cov(X) = E (XX’)− µXµ
′
X

I cov(X,Y) = E (XY’)− µXµ
′
Y

I cov(X) = E ((X− µX)X′) = E (X(X− µX)′)

I cov(X,Y) = E (X(Y− µY)′) = E ((X− µX)Y′)



Multidimensional Random Vectors (3.10)

Example 3.84 Let X ,Y and Z be independent (scalar) random
variables. Find the covariance of X = (X ,Y − X ,X + Y + Z ).



Multidimensional Random Vectors (3.10)

(Related to Example 3.85) Let Y is a (scalar) random variable
and 1 is a vector of size m whose components are all 1. What is
the covariance matrix of Y 1 = (Y ,Y , ...,Y )?



Multivariate Conditional Distribution (3.10.1)

Let Y is a random vector of size p while X is a random vector of
size q.
As a prediction of Y for a given X, we choose the regression, i.e.
the conditional expectation of Y given X. Note that this minimizes
the expected square of the error E ((Y− r(X)2).
Note that r(X) is µ(X) in Example 3.88.



Multivariate Conditional Distribution (3.10.1)

To calculate the conditional expectation, we need to know the
conditional density,

fY|X=x(y) =
f (x, y)

fX(x)
.

Using the conditional density, the conditional expectation is given
by

E (Y|X = X = x) =

∫
Rp

yfY|X=x(y)dy =

∫
Rp

y
f (x, y)

fX(x)
dy



Multivariate MGF (3.10.2)

For a random vector X, the MGF of X is defined by

M(t) = E (et
′X)

Here t is a vector of the same length as X.
Note that t′X is a scalar. That is,

t′X = t1X1 + t2X2 + · · ·+ tmXm.

where t = (t1, t2, ..., tm) and X = (X1,X2, ...,Xm).



Multinomial Distribution (3.10.4)

I n-tosses of a coin can be modeled as a Binomial distribution
(section 1.6).

I What about n-tosses of a dice? A toss of a dice has six
possible outcomes. This can be modeled as a multinomial
distribution (section 3.10.4).

I As a general definition, let’s assume that we do n experiments
of a special dice with m outcomes.

I Let pi be the corresponding probability of the i-th outcome.

I Also let Xi be the number of the i-th outcome, which is a
random variable.



Multinomial Distribution (3.10.4)

I The probability mass function

Pr(X1 = x1,X2 = x2, ...,Xm = xm) =
n!

x1!x2! · · · xm!
px11 px22 · · · p

xm
m ,

where x1 + x2 + · · · xm = 1.

I E (Xj) = npj
I Var(Xj) = npi (1− pj)

I E (XjXk) = n(n − 1)pjpk
I cov(Xj ,Xk) = −npjpk



Multinomial Distribution (3.10.4)

I The probability mass function

Pr(X1 = x1,X2 = x2, ...,Xm = xm) =
n!

x1!x2! · · · xm!
px11 px22 · · · p

xm
m ,

where x1 + x2 + · · · xm = 1.

I E (Xj) = npj
I Var(Xj) = npi (1− pj)

I E (XjXk) = n(n − 1)pjpk
I cov(Xj ,Xk) = −npjpk

All these properties can be derived from the MGF function

M(t) =

(
k∑

i=1

pie
ti

)n



Multinomial Distribution (3.10.4)

I E (Xj) = M(t)
∂tj
|t=0 = n

(∑k
i=1 pie

ti
)n−1

pje
tj |t=0 = npj

I E (XjXk) = n(n − 1)
(∑k

i=1 pie
ti
)n−2

pje
tjpke

tk |t=0 =

n(n − 1)pjpk
I etc.



Multinomial Distribution (3.10.4)
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ti
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So, the MGF is important. How do you calculate the MGF?


