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Multidimensional Random Vectors (3.10)

» In this lecture, we consider a random vector
X = (X1, X2, ..., Xm) of size m, where each X; is a random
variable.

» The bivariate normal distribution (3.5) is an example of a
random vector in which each component is a normal
distribution.

» Linear Algebra (or Matrix Algebra) is useful to understand
random vectors. Please check the appendix (section 10.2) of
the textbook.

P As linear algebra is not a prerequisite of this course, | will not
ask questions directly related to linear algebra (but still useful
to better understand the materials in this course.



Multidimensional Random Vectors (3.10)

» As in the joint cdf case in section 3.1, the cdf of a random
vector X is defined as

F(X) = Pr(X1 < X1,X2 < X2, ...,Xm < Xm).

Note that x = (x1, x2, ..., Xm) is a vector value.
» The pdf is defined as

a™F(x)

flx) = Ox10x> - - - OXm



Multidimensional Random Vectors (3.10)

» The mean of X is a vector,
p = E(X) = (E(X1), ..., E(Xmm))-

» How many pairs can you think out of (X1, ..., Xiy)?

» The covariance matrix cov(X) is a m x m matrix

COV(Xl, Xl) COV(Xl, X2) s COV(Xl, Xm)

cov(Xa, X1) cov(Xp, X2) -+ cov(Xa, Xm)
cov(X) = _ .

cov(Xm, X1) cov(Xm, X2) -+ cov(Xm, Xm)



Multidimensional Random Vectors (3.10)

» For two random vectors X and Y of the same size m, the
covariance matrix cov(X,Y) is defined as

cov(X1, Y1) cov(Xy, Y2) -+ cov(Xi, Ym)
cov(Xa, Y. cov(Xa,Ys) -+ cov(Xa, Ym
cou(X.Y) = (X2, 1) ( 2 2) ( 2 )
cov(Xm, Y1) cov(Xm, Y2) -+ cov(Xm, Ym)

» X and Y are uncorrelated if cov(X,Y) = 0.



Multidimensional Random Vectors (3.10)

Several properties are in order.
» cov(X+Y) = cov(X)+ cov(Y) if X and Y are uncorrelated.

X,Y, and Z are random vectors of the same size, and A and B are
fixed matrices while a and b are scalar values. (theorem 3.79)

> E(aX + bY) = aE(X) + bE(Y)
> E(AX + BY) = AE(X) + BE(Y)
» cov(X+Y,Z) = cov(X,Z)+ cov(Y,Z)
» cov(AX) = Acov(X)A’
Also, the following results hold (theorem 3.83)
> cov(X) = E(XX') — px sy
> cov(X,Y) = E(XY’") — puxpd
> cov(X) = E((X — px)X') = E(X(X — px)')
> cov(X,Y) = E(X(Y — py)') = E((X — pux)Y’)



Multidimensional Random Vectors (3.10)

Example 3.84 Let X, Y and Z be independent (scalar) random
variables. Find the covariance of X = (X, Y — X, X + Y + 2).



Multidimensional Random Vectors (3.10)

(Related to Example 3.85) Let Y is a (scalar) random variable
and 1 is a vector of size m whose components are all 1. What is
the covariance matrix of Y1 = (Y,VY,...,Y)?



Multivariate Conditional Distribution (3.10.1)

Let Y is a random vector of size p while X is a random vector of
size q.

As a prediction of Y for a given X, we choose the regression, i.e.
the conditional expectation of Y given X. Note that this minimizes
the expected square of the error E((Y — r(X)?).

Note that r(X) is 1(X) in Example 3.88.



Multivariate Conditional Distribution (3.10.1)

To calculate the conditional expectation, we need to know the
conditional density,

o) = o

Using the conditional density, the conditional expectation is given
by

E(YIX=X=x) = /Rp Yiix=x(y)dy = / fx.) dy

we fx(x)



Multivariate MGF (3.10.2)
For a random vector X, the MGF of X is defined by

M(t) = E(e*X)

Here t is a vector of the same length as X.
Note that t’X is a scalar. That is,

X =tX1+0Xo+ -+ tmXm.

where t = (t1, tp, ..., ty) and X = (X1, X2, ..., Xm).



Multinomial Distribution (3.10.4)

| 2

>

n-tosses of a coin can be modeled as a Binomial distribution
(section 1.6).

What about n-tosses of a dice? A toss of a dice has six
possible outcomes. This can be modeled as a multinomial
distribution (section 3.10.4).

As a general definition, let's assume that we do n experiments
of a special dice with m outcomes.

Let p; be the corresponding probability of the i-th outcome.

Also let X; be the number of the j-th outcome, which is a
random variable.



Multinomial Distribution (3.10.4)
» The probability mass function

n! “ x
Pr(Xy=x1, X2 = X2, .; Xy = Xm) = —————P1'P>" -
X11X2:+ Xm:

© P
where x;1 +x0 + -+ - X = 1.

E(Xj) = np;

Var(X;) = npi(1 — p))

E(XjXi) = n(n—1)pjp«

cov(Xj, Xi) = —npjpxk

vvyyypy



Multinomial Distribution (3.10.4)
» The probability mass function

I
n! .

Pr(Xi=x1. X =x.... Xn=Xn) = —————
% b 2o Am m) x1!x2!-~~xm!p:l P2

Py
where x; +xo + -+ - xp, = 1.
> E(Xj) = np;
> Var(Xj) = npi(1 - pj)
> E(XjXk) = n(n—1)pjpx
> cov(Xj, Xk) = —npjpk
All these properties can be derived from the MGF function

k n
M(t) = (Z p,-et">
i—1



Multinomial Distribution (3.10.4)

M K ] n—1 ]
> E(X)) = a(tjt.) =0 =n (Z;:1 Piet') pje%le=0 = np;

n—2
> E(XiXx) = n(n—1) (Ef‘zl p;et"> pjelipretli—o =
n(n —1)pjpk
> etc.



Multinomial Distribution (3.10.4)

M K ] n—1 ]
> E(X)) = a(tjt.) =0 =n (Z;:1 Piet') pje%le=0 = np;

» E(XjXk)=n(n—1) (Efle p,-et')n_2 pjelipretli—o =
n(n —1)pjpk
> etc.
So, the MGF is important. How do you calculate the MGF?



