Math 40 Probability and Statistical Inference

 Winter 2021Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 12: Multidimensional Random Vectors (3.10)

Multidimensional Random Vectors (3.10)

- In this lecture, we consider a random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ of size m, where each X_{i} is a random variable.
- The bivariate normal distribution (3.5) is an example of a random vector in which each component is a normal distribution.
- Linear Algebra (or Matrix Algebra) is useful to understand random vectors. Please check the appendix (section 10.2) of the textbook.
- As linear algebra is not a prerequisite of this course, I will not ask questions directly related to linear algebra (but still useful to better understand the materials in this course.

Multidimensional Random Vectors (3.10)

- As in the joint cdf case in section 3.1, the cdf of a random vector \mathbf{X} is defined as

$$
F(\mathbf{x})=\operatorname{Pr}\left(X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{m} \leq x_{m}\right)
$$

Note that $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a vector value.

- The pdf is defined as

$$
f(\mathbf{x})=\frac{\partial^{m} F(\mathbf{x})}{\partial x_{1} \partial x_{2} \cdots \partial x_{m}}
$$

Multidimensional Random Vectors (3.10)

- The mean of \mathbf{X} is a vector,

$$
\boldsymbol{\mu}=E(\mathbf{X})=\left(E\left(X_{1}\right), \ldots, E\left(X_{m}\right)\right)
$$

- How many pairs can you think out of $\left(X_{1}, \ldots, X_{m}\right)$?
- The covariance matrix $\operatorname{cov}(\mathbf{X})$ is a $m \times m$ matrix

$$
\operatorname{cov}(\mathbf{X})=\left(\begin{array}{cccc}
\operatorname{cov}\left(X_{1}, X_{1}\right) & \operatorname{cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{cov}\left(X_{1}, X_{m}\right) \\
\operatorname{cov}\left(X_{2}, X_{1}\right) & \operatorname{cov}\left(X_{2}, X_{2}\right) & \cdots & \operatorname{cov}\left(X_{2}, X_{m}\right) \\
& \vdots & & \vdots \\
\operatorname{cov}\left(X_{m}, X_{1}\right) & \operatorname{cov}\left(X_{m}, X_{2}\right) & \cdots & \operatorname{cov}\left(X_{m}, X_{m}\right)
\end{array}\right)
$$

Multidimensional Random Vectors (3.10)

- For two random vectors \mathbf{X} and \mathbf{Y} of the same size m, the covariance matrix $\operatorname{cov}(\mathbf{X}, \mathbf{Y})$ is defined as

$$
\operatorname{cov}(\mathbf{X}, \mathbf{Y})=\left(\begin{array}{cccc}
\operatorname{cov}\left(X_{1}, Y_{1}\right) & \operatorname{cov}\left(X_{1}, Y_{2}\right) & \cdots & \operatorname{cov}\left(X_{1}, Y_{m}\right) \\
\operatorname{cov}\left(X_{2}, Y_{1}\right) & \operatorname{cov}\left(X_{2}, Y_{2}\right) & \cdots & \operatorname{cov}\left(X_{2}, Y_{m}\right) \\
& \vdots & & \vdots \\
\operatorname{cov}\left(X_{m}, Y_{1}\right) & \operatorname{cov}\left(X_{m}, Y_{2}\right) & \cdots & \operatorname{cov}\left(X_{m}, Y_{m}\right)
\end{array}\right)
$$

- \mathbf{X} and \mathbf{Y} are uncorrelated if $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=\mathbf{0}$.

Multidimensional Random Vectors (3.10)

Several properties are in order.

- $\operatorname{cov}(\mathbf{X}+\mathbf{Y})=\operatorname{cov}(\mathbf{X})+\operatorname{cov}(\mathbf{Y})$ if \mathbf{X} and \mathbf{Y} are uncorrelated.
\mathbf{X}, \mathbf{Y}, and \mathbf{Z} are random vectors of the same size, and \mathbf{A} and \mathbf{B} are fixed matrices while a and b are scalar values. (theorem 3.79)
- $E(a \mathbf{X}+b \mathbf{Y})=a E(\mathbf{X})+b E(\mathbf{Y})$
- $E(A \mathbf{X}+B \mathbf{Y})=A E(\mathbf{X})+B E(\mathbf{Y})$
- $\operatorname{cov}(\mathbf{X}+\mathbf{Y}, \mathbf{Z})=\operatorname{cov}(\mathbf{X}, \mathbf{Z})+\operatorname{cov}(\mathbf{Y}, \mathbf{Z})$
- $\operatorname{cov}(\mathbf{A X})=\mathbf{A} \operatorname{cov}(X) \mathbf{A}^{\prime}$

Also, the following results hold (theorem 3.83)
$-\operatorname{cov}(\mathbf{X})=E(\mathbf{X X})-\mu_{\mathbf{X}} \mu_{\mathbf{X}}^{\prime}$

- $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left(\mathbf{X} \mathbf{Y}^{\prime}\right)-\boldsymbol{\mu}_{\mathbf{X}} \boldsymbol{\mu}_{\mathbf{Y}}^{\prime}$
- $\operatorname{cov}(\mathbf{X})=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right) \mathbf{X}^{\prime}\right)=E\left(\mathbf{X}\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right)^{\prime}\right)$
- $\operatorname{cov}(\mathbf{X}, \mathbf{Y})=E\left(\mathbf{X}\left(\mathbf{Y}-\boldsymbol{\mu}_{\mathbf{Y}}\right)^{\prime}\right)=E\left(\left(\mathbf{X}-\boldsymbol{\mu}_{\mathbf{X}}\right) \mathbf{Y}^{\prime}\right)$

Multidimensional Random Vectors (3.10)

Example 3.84 Let X, Y and Z be independent (scalar) random variables. Find the covariance of $\mathbf{X}=(X, Y-X, X+Y+Z)$.

Multidimensional Random Vectors (3.10)

(Related to Example 3.85) Let Y is a (scalar) random variable and $\mathbf{1}$ is a vector of size m whose components are all 1 . What is the covariance matrix of $Y \mathbf{1}=(Y, Y, \ldots, Y)$?

Multivariate Conditional Distribution (3.10.1)

Let \mathbf{Y} is a random vector of size p while \mathbf{X} is a random vector of size q.
As a prediction of \mathbf{Y} for a given \mathbf{X}, we choose the regression, i.e. the conditional expectation of \mathbf{Y} given \mathbf{X}. Note that this minimizes the expected square of the error $E\left(\left(\mathbf{Y}-r(\mathbf{X})^{2}\right)\right.$. Note that $r(\mathbf{X})$ is $\mu(\mathbf{X})$ in Example 3.88 .

Multivariate Conditional Distribution (3.10.1)

To calculate the conditional expectation, we need to know the conditional density,

$$
f_{\mathbf{Y} \mid \mathbf{X}=\mathbf{x}}(\mathbf{y})=\frac{f(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})} .
$$

Using the conditional density, the conditional expectation is given by

$$
E(\mathbf{Y} \mid \mathbf{X}=\mathbf{X}=\mathbf{x})=\int_{\mathbb{R}^{p}} \mathbf{y} f_{\mathbf{Y} \mid \mathbf{X}=\mathbf{x}}(\mathbf{y}) d \mathbf{y}=\int_{\mathbb{R}^{p}} \mathbf{y} \frac{f(\mathbf{x}, \mathbf{y})}{f_{\mathbf{X}}(\mathbf{x})} d \mathbf{y}
$$

Multivariate MGF (3.10.2)

For a random vector \mathbf{X}, the MGF of \mathbf{X} is defined by

$$
M(\mathbf{t})=E\left(e^{\mathbf{t}^{\prime} \mathbf{X}}\right)
$$

Here \mathbf{t} is a vector of the same length as \mathbf{X}.
Note that $\mathbf{t}^{\prime} \mathbf{X}$ is a scalar. That is,

$$
\mathbf{t}^{\prime} \mathbf{X}=t_{1} X_{1}+t_{2} X_{2}+\cdots+t_{m} X_{m}
$$

where $\mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{m}\right)$ and $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{m}\right)$.

Multinomial Distribution (3.10.4)

- n-tosses of a coin can be modeled as a Binomial distribution (section 1.6).
- What about n-tosses of a dice? A toss of a dice has six possible outcomes. This can be modeled as a multinomial distribution (section 3.10.4).
- As a general definition, let's assume that we do n experiments of a special dice with m outcomes.
- Let p_{i} be the corresponding probability of the i-th outcome.
- Also let X_{i} be the number of the i-th outcome, which is a random variable.

Multinomial Distribution (3.10.4)

- The probability mass function

$$
\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}
$$

$$
\text { where } x_{1}+x_{2}+\cdots x_{m}=1
$$

- $E\left(X_{j}\right)=n p_{j}$
- $\operatorname{Var}\left(X_{j}\right)=n p_{i}\left(1-p_{j}\right)$
- $E\left(X_{j} X_{k}\right)=n(n-1) p_{j} p_{k}$
$-\operatorname{cov}\left(X_{j}, X_{k}\right)=-n p_{j} p_{k}$

Multinomial Distribution (3.10.4)

- The probability mass function

$$
\operatorname{Pr}\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{m}=x_{m}\right)=\frac{n!}{x_{1}!x_{2}!\cdots x_{m}!} p_{1}^{x_{1}} p_{2}^{x_{2}} \cdots p_{m}^{x_{m}}
$$

$$
\text { where } x_{1}+x_{2}+\cdots x_{m}=1
$$

- $E\left(X_{j}\right)=n p_{j}$
- $\operatorname{Var}\left(X_{j}\right)=n p_{i}\left(1-p_{j}\right)$
- $E\left(X_{j} X_{k}\right)=n(n-1) p_{j} p_{k}$
- $\operatorname{cov}\left(X_{j}, X_{k}\right)=-n p_{j} p_{k}$

All these properties can be derived from the MGF function

$$
M(\mathbf{t})=\left(\sum_{i=1}^{k} p_{i} e^{t_{i}}\right)^{n}
$$

Multinomial Distribution (3.10.4)

- $E\left(X_{j}\right)=\left.\frac{M(\mathbf{t})}{\partial t_{j}}\right|_{\mathbf{t}=\mathbf{0}}=\left.n\left(\sum_{i=1}^{k} p_{i} e^{t_{i}}\right)^{n-1} p_{j} e^{t_{j}}\right|_{\mathbf{t}=\mathbf{0}}=n p_{j}$
- $E\left(X_{j} X_{k}\right)=\left.n(n-1)\left(\sum_{i=1}^{k} p_{i} e^{t_{i}}\right)^{n-2} p_{j} e^{t_{j}} p_{k} e^{t_{k}}\right|_{\mathbf{t}=\mathbf{0}}=$ $n(n-1) p_{j} p_{k}$
- etc.

Multinomial Distribution (3.10.4)

- $E\left(X_{j}\right)=\left.\frac{M(\mathbf{t})}{\partial t_{j}}\right|_{\mathbf{t}=\mathbf{0}}=\left.n\left(\sum_{i=1}^{k} p_{i} e^{t_{i}}\right)^{n-1} p_{j} e^{t_{j}}\right|_{\mathbf{t}=\mathbf{0}}=n p_{j}$
- $E\left(X_{j} X_{k}\right)=\left.n(n-1)\left(\sum_{i=1}^{k} p_{i} e^{t_{i}}\right)^{n-2} p_{j} e^{t_{j}} p_{k} e^{t_{k}}\right|_{\mathbf{t}=\mathbf{0}}=$ $n(n-1) p_{j} p_{k}$
- etc.

So, the MGF is important. How do you calculate the MGF?

