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Lecture 15: Four important distributions in
statistics (Chapter 4)



Multivariate normal distributions (4.1)

> Section 4.1 is an extension of the bivariate normal
distributions. The only difference is that now the random
vector has more than two components (thus called
"'multivariate’).

» As Linear Algebra is not a prerequisite of this course, | will
mention only the following fact

If X ~ N (e, Q), Z=QY3(X—p)~N(0,1).
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Here | is the identity matrix and 7/ is the inverse of the

square root of the covariance matrix €.

» | strongly recommend you to read this section and the
appendix for matrix algebra (section 10.2) at your own pace.



Chi-square distributions (4.2)

> Let X1, X5, ..., X, be lID from the standard normal
distribution.

» We are interested in the distribution of
n
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X (n) = ZXi )
i

the square sum of X's.

» We have already considered the case n = 1 several times
(using the idea of transformation).

P In this section, we are interested in n independent sum of X,.2.



Chi-square distributions (4.2)

> Let X1, X5, ..., X, be lID from the standard normal
distribution.

» We are interested in the distribution of
n

2 2

X (n) = ZXi )
i

the square sum of X's.
» The distribution of x?(n) is called Chi-square with n
degrees of freedom.

» This is actually a Gamma distribution with & = n/2 and
A=1/2.
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Chi-square distributions (4.2)

> From the independence of X?'s whose mean is 1 and variance
21
E(S)=n.
and
Var(S) = 2n.

> Example 4.19 shows that the MGF of the chi-square with n
dof (degrees of freedom) is

1

M(t; n) = 20

» Using the MGF, you can also check E(S) = n. Additionally,
E((x*(n))*) = n(n+2).
> Also, from the definition of the Chi-square distribution,

X2(m) + x3(m2) = x*(m + n2)



Chi-square distributions (4.2)

> If X; iid from N (u,0?), then (example 4.20)
1 ¢ 2 .2
LS 06— P ~ ()

(because X4 is standard normal).

> In data science, we often do not know the exact value of
(this is something we need to estimate from data). Instead,
we use the sample mean X = %Z,'-'X,-

» (Theorem 4.22)
1< -
30 =X~ (- 1)

a chi-square with df = n—1, not df = n.



Expectations and variances of quadratic forms (4.2.2)
We consider a random vector y ~ N (u, Q) of size n. If A and B
are n x n fixed symmetric matrices,

> E(y'Ay) = tr(AQ) + p/Ap
> Var(y'Ay) = 2tr(AQ)? + 4/ AQA L.
> Cov(y,y'Ay) =2QApu

> E((y — pu)Aly — p)(y — u)Bly — p)) =
tr(AQ)tr(BQ) + 2tr(AQBQ)



t-distributions (4.3)
Let X ~ N(0,1) and Y ~ x?(n). Then,
X

VY/n

follows the t—distribution with df = n, which is denoted as

Xn =

Xp ~ t(n).

> E(X,) =0
> Var(Xs) = 5
P> Check the textbook for the density function.

» As n — oo, X, converges to the standard normal (Theorem
4.29).



t-distributions (4.3)

» Let X; be IID from N(p,0?), i = 1,2,3,...,n. Unfortunately,
we do not know p and o?.

» We estimate 1 and o2 using the sample mean and variance

and




t-distributions (4.3)

» Let X; be IID from N (u,0?), i =1,2,3,...,n. We have

another set of data Y; from the same distribution N (1, 0

j=1,2,....m. As before, we do not know z and o2.
» Let X and Y be the sample mean of the two samples

> Let

s (i(x’ - X i.(y’ ‘Y)2>

» (Theorem 4.33; another important fact in this section)

X-Y
_|_

~t(n+m-—2)

ﬁ
3=

2),



F-distributions (4.4)

> Let X ~ x?(m) and Y ~ x?(n) be two independent random
variables.

» The distribution of é is the F-distribution with degrees of
freedom m and n.

» F-distributions have applications in the analysis of variance
(ANOVA).

» Check your textbook for the density.

n(m—2)
m(n+2)

2m?(m+n—2)

, variance: m

» Mean: 5, mode:



F-distributions (4.4)

> Let X; be 1ID from N(p,0?), i =1,2,3,...,n. We have
another set of data Y; from the same distribution N (y, 02),
j=1,2,....m. As before, we do not know x and o2.

» Not surprisingly, we have



