Math 40 Probability and Statistical Inference

 Winter 2021Yoonsang Lee (yoonsang.lee@dartmouth.edu)
Lecture 15: Four important distributions in statistics (Chapter 4)

Multivariate normal distributions (4.1)

- Section 4.1 is an extension of the bivariate normal distributions. The only difference is that now the random vector has more than two components (thus called 'multivariate').
- As Linear Algebra is not a prerequisite of this course, I will mention only the following fact

$$
\text { If } \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Omega), \quad \mathbf{Z}=\Omega^{-1 / 2}(\mathbf{X}-\boldsymbol{\mu}) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})
$$

Here \mathbf{I} is the identity matrix and $\Omega^{-1 / 2}$ is the inverse of the square root of the covariance matrix Ω.

- I strongly recommend you to read this section and the appendix for matrix algebra (section 10.2) at your own pace.

Chi-square distributions (4.2)

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID from the standard normal distribution.
- We are interested in the distribution of

$$
\chi^{2}(n)=\sum_{i}^{n} X_{i}^{2}
$$

the square sum of $X_{i}^{\prime} s$.

- We have already considered the case $n=1$ several times (using the idea of transformation).
- In this section, we are interested in n independent sum of X_{i}^{2}.

Chi-square distributions (4.2)

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be IID from the standard normal distribution.
- We are interested in the distribution of

$$
\chi^{2}(n)=\sum_{i}^{n} X_{i}^{2}
$$

the square sum of $X_{i}^{\prime} s$.

- The distribution of $\chi^{2}(n)$ is called Chi-square with n degrees of freedom.
- This is actually a Gamma distribution with $\alpha=n / 2$ and $\lambda=1 / 2$.

$$
f(s ; n)=\frac{1}{2^{n / 2} \Gamma(n / 2)} s^{n / 2-1} e^{-s / 2}, s \geq 0
$$

Chi-square distributions (4.2)

- From the independence of X_{i}^{2} 's whose mean is 1 and variance 2,

$$
E(S)=n
$$

and

$$
\operatorname{Var}(S)=2 n
$$

- Example 4.19 shows that the MGF of the chi-square with n dof (degrees of freedom) is

$$
M(t ; n)=\frac{1}{(1-2 t)^{n / 2}}
$$

- Using the MGF, you can also check $E(S)=n$. Additionally, $E\left(\left(\chi^{2}(n)\right)^{2}\right)=n(n+2)$.
- Also, from the definition of the Chi-square distribution,

$$
\chi^{2}\left(n_{1}\right)+\chi^{2}\left(n_{2}\right)=\chi^{2}\left(n_{1}+n_{2}\right)
$$

Chi-square distributions (4.2)

- If X_{i} iid from $\mathcal{N}\left(\mu, \sigma^{2}\right)$, then (example 4.20)

$$
\frac{1}{\sigma^{2}} \sum_{i}^{n}\left(X_{i}-\mu\right)^{2} \sim \chi^{2}(n)
$$

(because $\frac{X_{i}-\mu}{\sigma}$ is standard normal).

- In data science, we often do not know the exact value of μ (this is something we need to estimate from data). Instead, we use the sample mean $\bar{X}=\frac{1}{n} \sum_{i}^{n} X_{i}$
- (Theorem 4.22)

$$
\frac{1}{\sigma^{2}} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2} \sim \chi^{2}(n-1)
$$

a chi-square with $d f=n-1$, not $d f=n$.

Expectations and variances of quadratic forms (4.2.2)

We consider a random vector $\mathbf{y} \sim \mathcal{N}(\boldsymbol{\mu}, \Omega)$ of size n. If \mathbf{A} and \mathbf{B} are $n \times n$ fixed symmetric matrices,

- $E\left(\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}\right)=\operatorname{tr}(\mathbf{A} \Omega)+\mu^{\prime} \mathbf{A} \mu$
- $\operatorname{Var}\left(\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}\right)=2 \operatorname{tr}(\mathbf{A} \Omega)^{2}+4 \mu^{\prime} \mathbf{A} \Omega \mathbf{A} \boldsymbol{\mu}$.
- $\operatorname{Cov}\left(\mathbf{y}, \mathbf{y}^{\prime} \mathbf{A} \mathbf{y}\right)=2 \Omega \mathbf{A} \mu$
- $E\left((\mathbf{y}-\boldsymbol{\mu})^{\prime} \mathbf{A}(\mathbf{y}-\boldsymbol{\mu})(\mathbf{y}-\boldsymbol{\mu})^{\prime} \mathbf{B}(\mathbf{y}-\boldsymbol{\mu})\right)=$ $\operatorname{tr}(\mathbf{A} \Omega) \operatorname{tr}(\mathbf{B} \Omega)+2 \operatorname{tr}(\mathbf{A} \Omega \mathbf{B} \Omega)$

t-distributions (4.3)

Let $X \sim \mathcal{N}(0,1)$ and $Y \sim \chi^{2}(n)$. Then,

$$
X_{n}=\frac{X}{\sqrt{Y / n}}
$$

follows the t-distribution with $d f=n$, which is denoted as

$$
X_{n} \sim t(n)
$$

- $E\left(X_{n}\right)=0$
- $\operatorname{Var}\left(X_{n}\right)=\frac{n}{n-2}$
- Check the textbook for the density function.
- As $n \rightarrow \infty, X_{n}$ converges to the standard normal (Theorem 4.29).

t-distributions (4.3)

- Let X_{i} be IID from $\mathcal{N}\left(\mu, \sigma^{2}\right), i=1,2,3, \ldots, n$. Unfortunately, we do not know μ and σ^{2}.
- We estimate μ and σ^{2} using the sample mean and variance

$$
\bar{X}=\frac{1}{n} \sum_{i}^{n} X_{i}
$$

and

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- (Theorem 4.31; the most important fact in this section)

$$
\frac{\sqrt{n}(\bar{X}-\mu)}{\hat{\sigma}} \sim t(n-1)
$$

t-distributions (4.3)

- Let X_{i} be IID from $\mathcal{N}\left(\mu, \sigma^{2}\right), i=1,2,3, \ldots, n$. We have another set of data Y_{j} from the same distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, $j=1,2, \ldots, m$. As before, we do not know μ and σ^{2}.
- Let \bar{X} and \bar{Y} be the sample mean of the two samples

$$
\bar{X}=\frac{1}{n} \sum_{i}^{n} X_{i}, \quad \bar{Y}=\frac{1}{m} \sum_{i}^{n} Y_{i}
$$

- Let

$$
\hat{\sigma}^{2}=\frac{1}{n+m-2}\left(\sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}+\sum_{i}^{m}\left(Y_{i}-\bar{Y}\right)^{2}\right)
$$

- (Theorem 4.33; another important fact in this section)

$$
\frac{\bar{X}-\bar{Y}}{\hat{\sigma} \sqrt{\frac{1}{n}+\frac{1}{m}}} \sim t(n+m-2)
$$

F-distributions (4.4)

- Let $X \sim \chi^{2}(m)$ and $Y \sim \chi^{2}(n)$ be two independent random variables.
- The distribution of $\frac{X}{Y}$ is the F-distribution with degrees of freedom m and n.
- F-distributions have applications in the analysis of variance (ANOVA).
- Check your textbook for the density.
- Mean: $\frac{n}{n-2}$, mode: $\frac{n(m-2)}{m(n+2)}$, variance: $\frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}$.

F-distributions (4.4)

- Let X_{i} be IID from $\mathcal{N}\left(\mu, \sigma^{2}\right), i=1,2,3, \ldots, n$. We have another set of data Y_{j} from the same distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$, $j=1,2, \ldots, m$. As before, we do not know μ and σ^{2}.
- Not surprisingly, we have

$$
\frac{\frac{\sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}{\frac{\sum_{i}^{n}\left(Y_{j}-\bar{Y}\right)^{2}}{m-1}} \sim F(n-1, m-1)
$$

