> Math 40 Probability and Statistical Inference Winter 2021

Yoonsang Lee (yoonsang.lee@dartmouth.edu)

6.1 What is statistics?

In Math 40, we focus on the following task:

- There are variables of interest, say θ, but unknown. Statistics aim for the quantification of the unknown variables using Data.
- Example: By measuring the heights of all students, calculate the average height of the students. In this case, the variable of interest is the average height.
- Example: By measuring the time series of a stock price, estimate the volatility of the stock. The variable of interest is the volatility, or the variance of the time series.
- That is, we are interested in parametric inference problems.

Example 6.1 A penny of 0.75 inches in diameter is randomly dropped 100 times on a lined paper. It intersected a line in 80 throws. Estimate the distance, say θ, between the lines.

Solution

- (Specify the variable of interest) The parameter of unknown is θ, the distance between the lines.
- (What do we know? What is the data?) The probability 0.80 that the coin intersects the lines.
- (What is the model to explain the probability?) Let X be the center of the coin, which we assume to be a uniform random variable in $(0, \theta)$.
- The coin does not intersect the lines if $X-0.75 / 2>$ 0 or $X+0.75 / 2<\theta$.
- The probability of the previous event is given by $\frac{\theta-0.75}{\theta}$
- The data says the probability, $\frac{\theta-0.75}{\theta}$, is equal to 0.80 .
- We estimate that $\theta=\frac{0.75 \times 100}{80} \approx 0.94 i n$.

Example In a jar, there are balls numbered from 1 to θ, but θ is unknown. You are allowed to draw three balls out of the jar, and they turn out to be $4,11,12$. Estimate θ using the data.

Solution of Student A

As the maximum of the sample is 12 , I estimate that $\theta=12$.

Solution of Student B

Let X be a random variable uniform in $(0, \theta)$. We know that $E(X)=\frac{\theta}{2}$ and the sample mean is $\frac{4+11+12}{3}=$ 9. Thus I estimate that $\theta=9 \times 2=18$.

Solution of Student C

Well, I think I have a better idea. The median of X is $\frac{\theta}{2}$, and the sample median is 11 . Thus, I estimate that $\theta=22$.

Example In a jar, there are balls numbered from 1 to θ, but θ is unknown. You are allowed to draw three balls out of the jar, and they turn out to be $4,11,12$. Estimate θ using the data.

Solution of Student A

This approach is called the Maximum Likelihood Estimation (MLE; section 6.10)

Solution of Student B

This approach is called the Method of Moments (MM; section 6.2)

Solution of Student C

As you can guess, this approach is called the Method of Quantiles (MQ; section 6.3)

Note By coincidence, the Student A's approach is also equal to the method of quantiles using the 100% quantile.

There is an important question to ask. Which method is better (or more accurate)? (section 6.4)

This is a glimpse of our journey for Chapter 6, parameter estimation.

6.2 Method of moments (MM)

Review of probability (review of section 2.2) For a random variable X, we know how to calculate the central and non-central moments, μ_{k} and ν_{k}

$$
\mu_{k}=E\left((X-\mu)^{k}, \quad \mu=E(X)\right.
$$

and

$$
\nu_{k}=E\left(X^{k}\right)
$$

- The probability density of X is parameterized by the unknown variable θ.
- There are two ways to calculate the moments of X, i) using the parameterized density or ii) sample moments.
- The method of moments compare the two types of moments (from the parameterized density and from the sample) to find θ.
- As you may guess, it is preferred to use the noncentral moments (why?)

6.2 Method of moments (MM)

Example Let $\left\{X_{i}\right\}_{i=1}^{n}$ be IID from $\mathcal{N}\left(\mu, \sigma^{2}\right)$. Estimate μ and σ^{2}.

Solution

- $\hat{\mu}=E(X)=\frac{1}{n} \sum_{i}^{n} X_{i}=\bar{X}$
- $\hat{\mu}^{2}+\hat{\sigma}^{2}=E\left(X^{2}\right)=\frac{1}{n} \sum_{i}^{n} X_{i}^{2}$
- Solve for $\hat{\mu}$ and $\hat{\sigma}$, which yields

$$
\hat{\mu}=\bar{X}, \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Q What is the difference between

$$
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

and

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i}^{n}\left(X_{i}-\bar{X}\right)^{2} ?
$$

Check R code 6_2_samp_var_test. R on Canvas.

6.2 Method of moments (MM)

Example 6.7 Let $\left\{X_{i}\right\}_{i}^{n}$ be IID from $\mathcal{E}(\lambda)$. Use $M(x)=$ e^{-x} to estimate λ for an exponential distribution, where k is a given positive number.

Solution For an exponential distribution with λ,

$$
E(M(X))=E\left(e^{-X}\right)=\lambda \int_{0}^{\infty} e^{-x} e^{-\lambda x} d x=\frac{\lambda}{\lambda+1}
$$

(check the textbook for details). On the other hand, the sample approximation of $E(M(X))$ is

$$
\frac{1}{n} \sum_{i}^{n} e^{-X_{i}}
$$

Therefore,

$$
\lambda=\frac{-a}{a-1}
$$

where

$$
a=\frac{1}{n} \sum_{i}^{n} e^{-X_{i}}
$$

Check R code 6_2_expdist_estimate. R on Canvas.

6.3 Method of quantiles (MQ)

- Key idea: compare the p-th quantile of the parameterized model with the sample p-th quantile.
- If X is a R array containing the data, median(X) is the median.
- For a general p-th quantile, use quantile (X, p).

Example 6.9 Find the MQ estimator of the rate parameter λ in the exponential distribution using the median.

Solution

- Find the median in terms of λ. That is, we look for q such that

$$
1-e^{-\lambda q}=0.5
$$

- As $\lambda=\frac{\ln 2}{q}$, we use the sample median \hat{q} to estimate λ using

$$
\hat{\lambda}=\frac{\ln 2}{\hat{q}}
$$

Check R code 6_2_expdist_estimate. R on Canvas.

6.3 Method of quantiles (MQ)

Example 6.10 Find the MQ estimator of μ and σ^{2} of $\mathcal{N}\left(\mu, \sigma^{2}\right)$.

Solution

- The p-th quantile of $\mathcal{N}\left(\mu, \sigma^{2}\right)$, say q_{p}, is

$$
q_{p}=\mu+\sigma q_{p}^{s t}
$$

where $q_{p}^{s t}$ is the p-th quantile of the standard normal.

- As there are two parameters to estimate, we need to use two quantiles, say $p_{1^{-}}$and p_{2}-th quantiles.
- Using two quantiles, p_{1} and p_{2}, we need to solve for μ and σ using

$$
\begin{aligned}
& q_{p_{1}}=\mu+\sigma q_{p_{1}}^{s t} \\
& q_{p_{2}}=\mu+\sigma q_{p_{2}}^{s t}
\end{aligned}
$$

where $q_{p_{1}}$ and $q_{p_{2}}$ are approximated by the sample qunatiles.

Time to think in the context of data science

 Q: What are we missing?- How do you know the distribution type of your data?
- If you have different estimators, which one is your choice?

