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6.4 Statistical properties of an es-
timator

From data {X;}”, we estimate an unknown variable 6
0~ 0(X1, Xa,..., Xp,).

Example. Estimate the mean 6§ = p using the sample
mean

1 n
~ (X1, Xa, ., Xp) = — X;.
1% /14( 1y A2, 5 ) TL;

What can we say about the estimator 6 when
1. we have other data sets.
2. the data size n — co.

We are going to answer 1 in 6.4.1 while answer 2 in 6.4.4.
6.4.2 and 6.4.3 consider how we define accuracy of the
estimator.



6.4.1 Unbiasedness

Every time we have a new data set (of the same s1ze)
the estimator § will be different. Thus, we treat 6 as a
random variable, and ask its mean, £ (9) If

that is, if the mean of your estimator is equal to the true
variable, then the estimator is called unbiased.

Example 6.12 The sample mean
x-lyx
== 1. f

is unbiased. That is, F(X) = E(X).
The sample variance

. i(xi - %)

n—1

is unbiased. That is, E(-25 Y7 (X; — X)?) = Var(X).
cf. E(LYT(X; — pux)?) = Var(X) where pux =
B(X).



Example 6.13 Let {X;}? be IID from &£(X). The
MM estimator of A\, Aprpr = % is unbiased.

e nX follows a Gamma distribution with o = n and
A

* B(s :nfo fgammaxa)\)dx:nl#)\
(check the textbook for calculations).

e Although it is biased, E(Ayar) — A as n — oco. In
this case, the estimator is called asymptotically
unbiased (definition 6.15).



Example 6.14 Let { X;}? be IID from Uni form(0, 9).
o Let Xinaw = max(Xy, ..., X5).

e The cdf of X4, is given by

Pr(Xmae <) = f[Pr(Xi <z)= (%)n

By taking the derivative of the cdf,
n sx\n—1
1@ =75 (3)

E(Xmaz) = foexf(x) = 240, Thus, Xpa, is
biased but asymptotically unbiased.

From this calculation, we know that 0= ntly
n

is an unbiased estimator.

Check R code 6_4_Ex6.14.R on Canvas.



Example 6.15 A solder saw enemy tank numbers
15, 45 and 38. Assuming that tanks are numbered se-
quentially 1,2,..., what is an unbiased estimate o the
number of tanks in the enemy army?

Solution 45 x % = 60.

Are you sure this answer is correct?



6.4.2 Mean Square Error (MSE)

For a data set {X;}, we can define the error of the esti-
mator 6 R
error = 6 — 6.

e As 6 changes for a different data set, the estimator
f is a random variable, and thus the error is also
a random variable.

e Note that we defined the estimator as unbiased if
the mean of the error is zero.

e Mean square error (MSE) is the expected squared
error

MSE = E(error®) = E ((é - 9)2) .
e If the estimator is unbiased, MSE is the variance
of the error.

e More generally, the decomposition of MSE is

‘MSE = Va7“+Bias2‘

Here

Var = E ((é - E(é))2) :

and

Bias = E(0) — 6.

e Root MSE (RMSE) is the square root of MSE.



Do you remember the optimal portfolio design (sec-
tion 3.8)7

There are two stocks with the same mean but with
different variances. Then, we were able to find a new
portfolio (through a linear combination of the stocks)
with a variance smaller than any of the variances of the
stocks.

We are going to use a similar idea in example 6.23.



Example 6.23 We have two independent data sets

from the same distribution with mean p and variance o=,

2

say {X;}7" and {Y;}7. Instead of the two estimators X
and Y, can you come up with a new estimator with a
smaller MSE?

Solution

First of all, X and Y are unbiased estimators.

Var(X) = %2 and Var(Y) = %2 (from the inde-
pendence).

Thus, MSE of X is Var(X) = < while MSE of Y
is Var(Y) = %2

Let Z=7X+(1—-r)Y for0<r < 1.

E(Z)=rE(X)+(1—r)E(Y) = p, the true mean.
That is, Z is also an unbiased estimator.

MSE of Z=Var(Z) = r’o? + (1*T)2U2'

m n

By taking the derivative with respect to r and set

it equal to 0, we have r = —— as an optimal

n+
value.

When r = -2, that is,

n+m?

1 m n
ZZTL—i—m XZ:Xl_FXJ:YJ

is the unbiased estimator with the smallest MSE.




6.4.3 Multidimensional MSE

We have considered the case when 6 is a scalar. What
if we are interested in the estimation of more than one
variable, say a vector?

e For example, @ = (u, 02) is a two-dimensional vec-
tor.

e In general, for @ = (61,05, ...,0,), and its estimator
0,

e MSE of  is defined as
E((6-0)©0-0)),
which is a n X n matrix.

e The total MSE is the trace of the MSE matrix.
That is, it is the sum of the MSE of each 6;

Total MSE = Z MSE of 6;



6.4.4 Consistency of Estimators

When we have a data set, which of the following scenar-
ios is more doable?

A: We have other data sets of the same size.
B: We add more data values to the current set.

e The expectation with respect to scenario A is re-
lated to bias.

e What can we say about an estimator in scenario
B?

e To specify the size of your data, let 6,, be an esti-
mator of your choice using a data set of size n.

e We call the estimator én consistent if

0, — 0 asn — .
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