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6.4 Statistical properties of an es-

timator

From data {Xi}
n
i , we estimate an unknown variable θ

θ ≈ θ̂(X1, X2, ..., Xn).

Example. Estimate the mean θ = µ using the sample
mean

µ ≈ µ̂(X1, X2, ..., Xn) =
1

n

n
∑

i

Xi.

What can we say about the estimator θ̂ when

1. we have other data sets.

2. the data size n → ∞.

We are going to answer 1 in 6.4.1 while answer 2 in 6.4.4.
6.4.2 and 6.4.3 consider how we define accuracy of the
estimator.
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6.4.1 Unbiasedness

Every time we have a new data set (of the same size),

the estimator θ̂ will be different. Thus, we treat θ̂ as a
random variable, and ask its mean, E(θ̂). If

E(θ̂) = θ,

that is, if the mean of your estimator is equal to the true
variable, then the estimator is called unbiased.

Example 6.12 The sample mean

X =
1

n

n
∑

i

Xi

is unbiased. That is, E(X) = E(X).
The sample variance

1

n− 1

n
∑

i

(Xi −X)2

is unbiased. That is, E( 1
n−1

∑n

i (Xi −X)2) = V ar(X).

cf. E( 1
n

∑n

i (Xi − µX)2) = V ar(X) where µX =
E(X).
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Example 6.13 Let {Xi}
n
i be IID from E(λ). The

MM estimator of λ, λ̂MM = 1
X

is unbiased.

• nX follows a Gamma distribution with α = n and
λ.

• E( 1
X
) = n

∫

∞

0
1
x
fgamma(x;α, λ)dx = nλ

n−1 6= λ

(check the textbook for calculations).

• Although it is biased, E(λ̂MM ) → λ as n → ∞. In
this case, the estimator is called asymptotically
unbiased (definition 6.15).
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Example 6.14 Let {Xi}
n
i be IID from Uniform(0, θ).

• Let Xmax = max(X1, ..., Xn).

• The cdf of Xmax is given by

Pr(Xmax ≤ x) =
n
∏

i

Pr(Xi ≤ x) =
(x

θ

)n

• By taking the derivative of the cdf,

f(x) =
n

θ

(x

θ

)n−1

• E(Xmax) =
∫ θ

0 xf(x) = n
n+1θ. Thus, Xmax is

biased but asymptotically unbiased.

• From this calculation, we know that θ̂ = n+1
n

Xmax

is an unbiased estimator.

Check R code 6 4 Ex6.14.R on Canvas.
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Example 6.15 A solder saw enemy tank numbers
15, 45 and 38. Assuming that tanks are numbered se-
quentially 1,2,..., what is an unbiased estimate o the
number of tanks in the enemy army?

Solution 45× 4
3 = 60.

Are you sure this answer is correct?

5



6.4.2 Mean Square Error (MSE)

For a data set {Xi}, we can define the error of the esti-

mator θ̂
error = θ̂ − θ.

• As θ̂ changes for a different data set, the estimator
θ̂ is a random variable, and thus the error is also
a random variable.

• Note that we defined the estimator as unbiased if
the mean of the error is zero.

• Mean square error (MSE) is the expected squared
error

MSE = E(error2) = E
(

(θ̂ − θ)2
)

.

• If the estimator is unbiased, MSE is the variance
of the error.

• More generally, the decomposition of MSE is

MSE = V ar +Bias2

Here
V ar = E

(

(θ̂ − E(θ̂))2
)

,

and
Bias = E(θ̂)− θ.

• Root MSE (RMSE) is the square root of MSE.
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Do you remember the optimal portfolio design (sec-
tion 3.8)?

There are two stocks with the same mean but with
different variances. Then, we were able to find a new
portfolio (through a linear combination of the stocks)
with a variance smaller than any of the variances of the
stocks.

We are going to use a similar idea in example 6.23.
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Example 6.23 We have two independent data sets
from the same distribution with mean µ and variance σ2,
say {Xi}

m
i and {Yj}

n
j . Instead of the two estimators X

and Y , can you come up with a new estimator with a
smaller MSE?

Solution

• First of all, X and Y are unbiased estimators.

• V ar(X) = σ2

m
and V ar(Y ) = σ2

n
(from the inde-

pendence).

• Thus, MSE of X is V ar(X) = σ2

m
while MSE of Y

is V ar(Y ) = σ2

n
.

• Let Z = rX + (1 − r)Y for 0 < r < 1.

• E(Z) = rE(X)+(1− r)E(Y ) = µ, the true mean.
That is, Z is also an unbiased estimator.

• MSE of Z= V ar(Z) = r2σ2

m
+ (1−r)2σ2

n
.

• By taking the derivative with respect to r and set
it equal to 0, we have r = m

n+m
as an optimal

value.

• When r = m
n+m

, that is,

Z =
1

n+m





m
∑

i

Xi +

n
∑

j

Yj





is the unbiased estimator with the smallest MSE.
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6.4.3 Multidimensional MSE

We have considered the case when θ is a scalar. What
if we are interested in the estimation of more than one
variable, say a vector?

• For example, θ = (µ, σ2) is a two-dimensional vec-
tor.

• In general, for θ = (θ1, θ2, ..., θn), and its estimator

θ̂,

• MSE of θ̂ is defined as

E
(

(θ̂ − θ)′(θ̂ − θ)
)

,

which is a n× n matrix.

• The total MSE is the trace of the MSE matrix.
That is, it is the sum of the MSE of each θi

Total MSE =
n
∑

i

MSE of θi
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6.4.4 Consistency of Estimators

When we have a data set, which of the following scenar-
ios is more doable?

A: We have other data sets of the same size.

B: We add more data values to the current set.

• The expectation with respect to scenario A is re-
lated to bias.

• What can we say about an estimator in scenario
B?

• To specify the size of your data, let θ̂n be an esti-
mator of your choice using a data set of size n.

• We call the estimator θ̂n consistent if

θ̂n → θ as n → ∞.
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