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6.5 Linear Estimation

Let {Yi} IID from a distribution with unknown mean α
and variance σ2. That is,

Yi = α+ εi, i = 1, 2, ..., n.

Note that V ar(ε) = σ2. Using {Yi}, can you estimate
the unknown mean α?

• Our most intuitive answer would be

α̂ = Y =
1

n

n∑
i

Yi,

the sample mean.

• The sample mean is unbiased (section 6.4.1).

• In fact, the sample mean has the smallest MSE
(theorem 6.35).
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Now we have a data set {(xi, Yi)}ni .

• We assume a linear relation between xi and Yi

Yi = βxi + εi

where εi has mean zero and variance σ2.

• Also, they are independent (my assumption is stronger
than the one in your textbook).

• We want to estimate β using the data {(xi, Yi)}ni .

• Example 6.36 (a) explains how to derive an unbi-
ased estimate of β,

β̂ =

∑n
i xiYi∑n
i x

2
i

by assuming a linear combination of the data points
Yi,

β̂ =

n∑
i

λiYi.

• In the derivation, it uses the idea of the Lagrange
multiplier (vector calculus) to minimize MSE.

• Example 6.36 (b) shows that this estimator can be
found by minimizing the residual sum of squares

RSS =

n∑
i

(Yi − βxi)2.
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• There are other unbiased estimators of β,

β̂1 =
1

n

n∑
i

Yi
xi
,

β̂2 =

∑n
i Yi∑n
i xi

.

• However, they are not optimal (that is, MSEs are
larger than the on in Example 6.36). See Example
6.37 for details.

Example 6.38 The instructor gives students a series
of n assignments. The maximum number of points in
the i-th assignment is xi. Suppose that the i-th student
gains Yi points in the i-th assignment (Yi ≤ xi). To
rank the student in the class, the instructor wants a
metric for student’ performance by finding the ratio of
the number of points received to the maximum number
of points. Find an unbiased estimator of the ratio.

Solution The problem asks the coefficient β when

Yi = βxi + εi.

We have at least three unbiased estimators,

β̂ =

∑n
i xiYi∑n
i x

2
i

, β̂1 =
1

n

n∑
i

Yi
xi
, β̂2 =

∑n
i Yi∑n
i xi

.

If you are interested in the minimum MSE estimator,
choose the first one.

3



6.6 Estimation of Variance and Cor-
relation Coefficient

6.6.1 Quadratic estimation of the variance

Let {Yi}ni be IID from µ, σ∈; µ and σ2 are unknown.

• From section 6.4, we know that the sample vari-
ance

σ̂2 =
1

n− 1

∑
i

(Yi − Y )2

is unbiased.

• It is also optimal in the sense that MSE is mini-
mized (theorem 6.41).

• The estimator is also consistent (the variance of

the estimator is 2σ4

n−1 , which converges to 0 as n→
∞).
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Example 6.43 Let {ri}ni be n independent measure-
ments of the radius of a circle, ρ. How do we estimate
the area of the circle?

• First estimator, Â1 = 1
n

∑n
i πr

2
i , the mean of the

sample area.

• Â1 is biased as E(r2i ) = V ar(ri) + ρ2.

• Another estimator, Â2 = πr2 where r = 1
n

∑n
i ri.

• This one is also biased,

E(r2) = V ar(r) + E(r)2 =
V ar(ri)

n
+ ρ2

• However, its bias converges to 0 as n→∞. That
is, it is asymptotically unbiased.
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6.6.2 Estimation of the covariance and cor-
relation coefficient

Let {(Xi, Yi)}ni be IID from a normal distribution with

unknown mean µ and covariance matrix variance

(
σ2
x σxy

σxy σ2
y

)
.

• As in the variance estimation, the sample covari-
ance

σ̂xy =
1

n− 1

n∑
i

(Xi −X)(Yi − Y ),

is an unbiased estimator of the population covari-
ance σxy (theorem 6.44).

• R command cov calculate the sample covariance.

Check R code 6 6 Thm6.44.R on Canvas.

• The correlation coefficient is ρ =
σxy

σx
σy. We use

sample variances and covariance to estimate the
correlation coefficient

r =

∑n
i (Xi −X)(Yi − Y )√

(
∑n
i (Xi −X))(

∑j
i (Yj − Y ))

• R command cor calculate the sample (Pearson)
correlation coefficient.

• Note The Pearson correlation coefficient is bi-
ased.
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6.7 Least squares for simple linear
regression

Let {(Xi, Yi}ni be IID from an unknown distribution.
We are interested in a linear model between X and Y

Yi = α+ βxi + εi, i = 1, 2, ..., n,

where xi is a specified value of Xi. E(εi) = 0 and
V ar(εi) = σ2.

• The ordinary least squares (ODS) estimators of
the intercept (α) and the slope (β) in the sim-
ple linear regression minimize the residual sum of
squares (RSS)

RSS(α, β) =

n∑
i

(Yi − α− βXi)
2.

• In Chapter 3, we learned that the regression is the
conditional expectation, which minimizes E((Y −
r(x))2).

• RSS is related to E((Y − r(x))2).

• Thus, the ODS estimators give us the conditional
expectation in a linear form.

• Using Calculus,

β̂ =

∑n
i (xi −X)(Yi − Y )∑n

i (xi − x)2
, α̂ = Y − β̂x
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• Theorem 6.50 says

V ar(β̂) =
σ2∑n

i (xi − x)2

and

V ar(α̂) =
σ2
∑n
i
x2
i

n∑n
i (xi − x)2

• In particular, when εi is normal, we have (theorem
6.53)

1. α̂ and β̂ has the minimum MSE.

2. α̂ ∼ N (α,
σ2 ∑n

i

x2
i
n∑n

i (xi−x)2 ) and β̂ ∼ N (β, σ2∑n
i (xi−x)2 ).

3. The estimator σ̂2 = 1
n−2

∑n
i (Yi − α̂ − β̂xi)2

is unbiased for σ2 and the normalized sum of
squares has a chi-square distribution

(n− 2)
σ̂2

σ2
∼ χ2(n− 2).

4. β̂ minus its true value divided by its standard
error has a t-distribution

β̂ − β
σ̂
√∑n

i (xi − x)2
∼ t(n− 2).
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6.7.3 The lm function and prediction by
linear regression

We will focus on how to use lm in R for linear regression
and interpretation of the outputs.

• lm.model = lm(Y∼X)

• summary(lm.model)

• or names(lm.model)

• For a confidence interval confint(lm.model)

• To make a prediction,

predict(lm.model, data.frame(X=c(1,2,3)))

Additional option:

interval="confidence" for regression prediction
or

interval="prediction" for individual prediction

• plot(X,Y) to plot

• abline(lm.model) to add the regression line.

• Multiple R-squared

R2 = 1−
∑n
i r

2
i∑n

i (Yi − Y )2
,

• Adjusted R-squared

R2
adj = 1− (n− 1)

(n− 2)

∑n
i r

2
i∑n

i (Yi − Y )2
.
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