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In real calculus, we learn about differentiation and integration. In multivariable
(real) calculus, we learn about several different types of integration: for example,
there is multiple integration over subsets of Rn, and then there is line and surface
integration, which takes place over curves in Rn and surfaces in R3. In complex
analysis, we will primarily be interested in a complex version of line integration,
which is frequently called contour integration.

1. Parameterization of curves

Recall from vector calculus the notion of a line integral: given a function f(x, y)
in R2, say, and a curve C in R2 parameterized by r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b, the
line integral of f along C is equal to the definite integral∫ b

a

f(x(t), y(t))|r′(t)| dt.

There is a related expression which gives the value of a line integral of a vector field
along a curve. In complex analysis we will be interested in computing yet another
type of line/contour integral, whose definition uses the fact that there is a natural
multiplicative structure on C.

Let z : [a, b] → C be a function from a closed interval of R to C. We can plot
the graph of z by sketching its image in C; in general this will look like a curve.
If we write z(t) = x(t) + y(t)i, the derivative of z(t) is just z′(t) = x′(t) + y′(t)i,
assuming both x, y are differentiable as real functions. We define a parameterized
curve to be any function z : [a, b]→ C. A parameterized curve is said to be smooth if
z : [a, b]→ C is a function such that z(t) is differentiable, z′(t) is continuous on [a, b],
and z′(t) 6= 0 at any t. (At the endpoints t = a, b, this derivative is to be interpreted
as a one-sided derivative.)

More generally, a piecewise (parameterized) smooth curve is any function z :
[a, b] → C for which there exist a finite number of real numbers a = t0 < t1 <
. . . < tn = b such that z restricted to each closed interval [ti, ti+1] is a parameterized
smooth curve.

A parameterized curve z : [a, b] → C is said to be closed if z(a) = z(b). A
parameterized curve is said to be closed if z is not self-intersecting except possibly
at its endpoints, ie, if z(t1) = z(t2), then t1 = t2 or t1, t2 = a, b.

Examples.
1
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• An important class of curves which we will encounter repeatedly over the rest
of the class are circles in C. Let C be a circle of radius r centered at the point
z0. Then C can be parameterized by z(t) = z0 +reit, 0 ≤ t ≤ 2π. Since z(t) =
z0+r(cos t+i sin t), its derivative is given by z′(t) = −r sin t+i(r cos t) = rieit.
We can see that this parameterization is smooth, since z′(t) is continuous and
never equals 0 anywhere. Furthermore, this parameterization is simple and
closed. This parameterization will occur so frequently in this class that you
should memorize it!
• Another important (though not quite as important) class of curves which we

will encounter are line segments connecting two (distinct) complex numbers
z0 to z1. If we want to parameterize the line segment joining z0, z1 with a
function z(t) on the interval [0, 1] where z(0) = z0, z(1) = z1, then we can let
z(t) = z0 + t(z1 − z0). One quickly checks z′(t) = z1 − z0 6= 0 is continuous,
so this parameterization is smooth. This parameterization is simple, but not
closed.
• Piecewise smooth curves appear frequently in complex analysis. In many cases

they consist of line segments and circular arcs joined in certain arrangements.
For example, polygons like triangles, rectangles, etc. are all piecewise smooth
curves. Similarly, semicircles, or wedges of circles, are also piecewise smooth
curves.
• Notice that the graph of a parameterized curve does not uniquely determine

the parameterization. For example, if C = S1 is the unit circle centered at
the origin, then two different parameterizations whose graph is C are z1(t) =
eit, 0 ≤ t ≤ 2π, and z2(t) = e2it, 0 ≤ t ≤ π.
• When writing parameterizations of curves, you should get in the habit of not

just indicating the function z(t) but also the domain [a, b] of z. Many sources
will omit the domain if it is obvious from the context what the domain is, but
do not do this until you are absolutely sure of what you are doing!
• If z(t) is a simple closed curve in C, then a seemingly intuitively obvious but

surprisingly difficult theorem to prove (the Jordan curve theorem) states that
the graph of this curve divides C into two connected components: an interior
and an exterior. We say that z(t) has positive orientation if the interior of this
curve is on its left as t increases; an equivalent formulation is that z(t) induces
a counterclockwise orientation on its graph. For example, z(t) = eit, 0 ≤ t ≤
2π is a parameterization of S1 which has positive orientation, while e−it has
negative orientation.

Even though the graph of a parameterized curve does not uniquely determine the
underlying parameterization, we can define a notion of when two parameterized curves
are equivalent. Suppose z1 : [a, b]→ C, z2 : [c, d]→ C are two parameterized smooth
curves. Then they are equivalent if there exists a function t(s) : [c, d] → [a, b] such
that t′ is continuous, t(c) = a, t(d) = b, t′(s) > 0 everywhere, and z1(t) = z2(t(s)).
One can check that this definition of equivalence is actually an equivalence relation
(ie, is reflexive, symmetric, and transitive).

The equivalence class of a given parameterized curve consists of parameterized
curves whose graphs are all the same curve in C and share the same orientation on
that curve: that is, they all share the same starting point and endpoint. Indeed, the

http://en.wikipedia.org/wiki/Jordan_curve_theorem
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t(c) = a, t(d) = b conditions ensure that the starting and end points are the same,
and the t′(s) > 0 condition ensures that two equivalent curves traverse the graph in
the same direction and trace out each point the same number of times.

Given a parameterized curve z(t) : [a, b] → C, there is a canonical way to obtain
a parameterized curve whose graph is the same as z(t) but has opposite orientation:
namely, consider the function z− : [a, b]→ C defined by z−(t) = z(b+ a− t). z− and
z have the same graph, but opposite starting and end points.

Examples.

• The two curves z1(t) = eit, 0 ≤ t ≤ 2π, and z2(t) = e2it, 0 ≤ t ≤ π are
equivalent. Indeed, their graphs are both S1, and a re-parameterization of z1
to z2 is given by t(s) = s/2; ie, z2(t) = e2it = z1(2t).
• The two curves z1(t) = eit, 0 ≤ t ≤ 2π and z2(t) = e−it, 0 ≤ t ≤ 2π trace out

the same curve, but in opposite orientations.
• The two curves z1(t) = eit, 0 ≤ t ≤ 2π, and z2(t) = e2it, 0 ≤ t ≤ 2π, are not

equivalent. The intuitive way to see this is the fact that z1 traces out S1 once,
while z2 does so twice. It is not too difficult to make this more precise.

2. Contour integration

With an understanding of how to parameterize curves, we can now define contour
integration. Let γ be a smooth curve parameterized by z(t), a ≤ t ≤ b, and let f(z)
be a continuous (or possibly piecewise-continuous) complex function defined on γ.
Then the integral of f along γ is defined to be∫

γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt,

if the definite integral on the right hand side exists. (The integrand is a complex
function of a real variable, and we integrate it by integrating the real and imagi-
nary parts separately.) We will soon show that this definition is independent of the
parameterization for γ, as long as we restrict to equivalent parameterizations (ie,
parameterizations giving the same orientation), but before doing so we will calculate
a few simple examples.

Examples.

• Suppose f(z) = z, and we want to integrate along the circle z(t) = eit, 0 ≤
t ≤ 2π. Then z′(t) = ieit, so

∫
γ

z dz =

∫ 2π

0

z(t)·z′(t) dt =

∫ 2π

0

ie2it dt =

∫ 2π

0

i(cos 2t+i sin 2t) dt =

∫ 2π

0

− sin 2t+i cos 2t dt.

We need to compute the two integrals
∫ 2π

0
− sin 2t dt,

∫ 2π

0
cos 2t dt; these are

both equal to 0, so the original integral is equal to 0 + 0i = 0.
• Suppose f(z) = z, and γ is the line segment connecting 0 to 1 + i. Then we

can parameterize γ by using z(t) = t+ ti, 0 ≤ t ≤ 1, so z′(t) = 1 + i. Then
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∫
γ

z dz =

∫ 1

0

z(t)·z′(t) dt =

∫ 1

0

(t−ti)(1+i) dt =

∫ 1

0

(t+t)+i(t−t) dt =

∫ 1

0

2t dt = 1.

• The next calculation is probably the most important contour integral we will
do in this class. Let f(z) = 1/z, and let z(t) = eit, 0 ≤ t ≤ 2π parameterize
the unit circle with positive orientation. Then z′(t) = ieit, and∫

γ

1

z
dz =

∫ 2π

0

1

eit
· ieit dt =

∫ 2π

0

i dt = 2πi.

In actuality we will not compute too many explicit line integrals; rather, it is
their properties, especially when integrating holomorphic functions, which are of
primary interest. The first property we prove is that the line integral is independent
of parameterization:

Proposition 1. If z1(t), z2(t) are equivalent parameterizations of a smooth curve γ,
they both yield the same value for the integral of any function f(z) along γ.

Proof. Suppose t(s) : [c, d]→ [a, b] reparameterizes z2(t), c ≤ t ≤ d, to z1(t), a ≤ t ≤
b, so that z1(t(s)) = z2(s). Then using the change of variables t = t(s), we get∫ b

a

f(z1(t))z
′
1(t) dt =

∫ d

c

f(z1(t(s))z
′
1(t(s))t

′(s) ds.

However, since z1(t(s)) = z2(s), we have z′1(t(s))t
′(s) = z′2(s) by the chain rule, so

the integral above is just equal to∫ d

c

f(z2(s)) · z′2(s) ds.

�

This property probably sounds familiar, because there is an identical property that
one can prove using almost exactly the same idea when showing that line integrals
of scalar functions or vector fields are independent of choice of parameterization
of the underlying curve. As an exercise, for each of the examples above, you can
try reparameterizing the curve with a different parameterization, calculate the line
integral using that parameterization, and see that you get the same result.

More generally, suppose γ is a piecewise smooth curve. Then we can define the line
integral of f(z) over γ by breaking apart γ into its smooth components γ1, γ2, . . . , γn,
and then integrating f(z) over each smooth curve γi and adding the results together.
Again, this is exactly identical to how line integrals in vector calculus are calculated
over piecewise smooth curves.

Example. Suppose γ is the polygonal path from 0 to 1 and then 1 to 1 + i. Let
γ1, γ2 be these two paths. Let f(z) = z2. Then∫

γ

z2 dz =

∫
γ1

z2 dz +

∫
γ2

z2 dz.

We can parameterize γ1 using z1(t) = t, 0 ≤ t ≤ 1, so z′(t) = 1, and
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∫
γ1

z2 dz =

∫ 1

0

t2 dt =
1

3
.

Similarly, we can parameterize γ2 using z2(t) = 1 + it, 0 ≤ t ≤ 1, so z′(t) = i, and∫
γ2

z2 dz =

∫ 1

0

(1 + it)2i dt =

∫ 1

0

−2t+ i(1− t2) dt = −1 +
2

3
i.

Therefore
∫
γ
z2 dz = −2/3 + 2i/3.

There are many properties of integrals from single variable calculus or vector cal-
culus which carry over to contour integrals of complex functions, and we omit the
simpler proofs because of their similarity to the proofs of the corresponding real
statements:

• Suppose c is any complex number. Then
∫
γ
cf dz = c

∫
γ
f dz.

• Suppose f, g are both continuous. Then
∫
γ
(f + g) dz =

∫
γ
f dz +

∫
γ
g dz.

Taken together, this property with the previous property show that contour
integration is linear over C.
• Suppose γ− is γ with opposite orientation. Then

∫
γ
f dz = −

∫
−γ f dz; in

other words, reversing the orientation of the curve γ flips the sign of the
integral. For example, recall that if γ is S1 with positive orientation, then∫
γ

1/z dz = 2πi. We can parameterize γ− using z(t) = e−it, 0 ≤ t ≤ 2π, so∫
γ−

1

z
dz =

∫ 2π

0

1

e−it
· −ie−it dt = −2πi.

• Suppose γ is parameterized by z(t), a ≤ t ≤ b. Then the integral
∫ b
a
|z′(t)| dt

is just the arc length of γ, as the real calculus formula for arc length shows.
• One property of definite integrals in one variable which does not carry over

(at least not in a naive way) is u-substitution. More specifically, do not make
substitutions of the form u = u(z) in integrals. There is a way to try to
rigorously justify an analogue of u-substitution for contour integrals, but it
requires more knowledge than we have now.

All of the above properties will be repeatedly used for the rest of the class. The
following property will also be used, but because it is not as obvious how to prove
(although intuitively the conclusion makes sense), we will give a rigorous proof:

Proposition 2. Suppose γ is a piecewise smooth curve and has arc length L. Let
f(z) be a continuous function on a set containing γ, and suppose supz∈γ |f(z)| = M .
(More generally, we can allow M to be any upper bound for |f(z)| over z ∈ γ, but
the smaller M is the better the conclusion of this theorem will be.) Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ML.

Proof. Using the definition for contour integrals,∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(z(t))z′(t) dt

∣∣∣∣ ,



6 CONTOUR INTEGRATION

where z(t), a ≤ t ≤ b, is a parameterization for γ. A property from real calculus says
that ∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

An analogue of this property holds where we permit the integrand to be a complex-
valued function of a real variable (this will be on the next homework set); namely,∣∣∣∣∫ b

a

f(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(t)| dt,

where f(t) = x(t) + y(t)i is a complex function of a real variable. Applying this to
the integral we are interested in,

∣∣∣∣∫ b

a

f(z(t))z′(t) dt

∣∣∣∣ ≤ ∫ b

a

|f(z(t))z′(t)| dt =

∫ b

a

|f(z(t))||z′(t)| dt ≤M

∫ b

a

|z′(t)| dt = ML,

where we use the fact that |f(z(t))| ≤M for all a ≤ t ≤ b by the definition of M . �

This property will be very useful in situations where we are unable to explicitly
evaluate a particular contour integral, but will need estimates on its size. Sometimes
this proposition provides strong enough estimates and sometimes it does not.

The next theorem is a contour integral version of the familiar fundamental theorem
of calculus for definite integrals of a single variable. It is also reminiscent of the
fundamental theorem of calculus for line integrals (which really is a generalization
of the ordinary fundamental theorem of calculus), and the method of proof of the
complex analysis version is essentially identical to the line integral version. However,
we will shortly see that you need to be careful with its use!

Suppose f is a continuous complex function defined on an open set Ω of C. We
call another complex function F a primitive for f on Ω if F is holomorphic on Ω and
F ′(z) = f(z) in Ω. In other words, a primitive is the complex analysis version of an
antiderivative.

Theorem 1. Suppose F is a primitive for f on Ω and γ is a smooth curve completely
contained in Ω whose starting point is w1 and end point is w2. Then∫

γ

f(z) dz = F (w2)− F (w1).

Proof. Let z(t), a ≤ t ≤ b, be a smooth parameterization for γ. We have∫
γ

f(z) dz =

∫ b

a

f(z(t))z′(t) dt =

∫ b

a

F ′(z(t))z′(t) dt.

One can prove that a version of the chain rule applies to the composition F ◦ z;
namely, if F is holomorphic and z(t) is C1, then

d

dt
F (z(t)) = F ′(z(t))z′(t).

(This will be on next week’s homework.) Taking this fact for granted, we have
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∫ b

a

F ′(z(t))z′(t) dt =

∫ b

a

d

dt
F (z(t)) dt = F (z(b))− F (z(a)),

where in the last equality we just use the fact that
∫ b
a
f ′(t) dt = f(b)− f(a) for real

functions, applied to the real and imaginary parts of F (z(t)). �

Corollary 1. The theorem above holds if γ is piecewise-smooth instead of smooth.

Proof. Just break γ up into its smooth pieces γ1, γ2, . . . , γn. Let γi have starting point
wi and endpoint wi+1. Then∫

γ

f(z) dz =
∑∫

γi

f(z) dz =
∑

F (wi+1)− F (wi).

This is just a telescoping sum equal to F (wn+1)− F (w1), as desired. �

The following two corollaries are complex-analysis versions of path-independence
of line integrals of conservative vector fields.

Corollary 2. Suppose f has a primitive on an open set Ω containing the piecewise
smooth closed curve γ. Then ∫

γ

f(z) dz = 0.

Corollary 3. Suppose γ1, γ2 are two paths completely contained in an open set Ω
with the same starting and end point. If f(z) has a primitive in Ω then∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

This theorem and its corollaries are surprisingly useful; they makes evaluating a
lot of integrals much easier. In particular, if the integrand of a contour integral has
a primitive (for example, f(z) = ez or a polynomial), this theorem can save a lot
of work. On the other hand, you must be ABSOLUTELY SURE that f(z) has a
primitive on all of γ, as the last example below illustrates:

Examples.

• Since ez is its own primitive on all of C, the integral of ez across any closed
curve in C is 0. In a similar vein, suppose z(t) = t2 + esin t, 0 ≤ t ≤ π/2,
parameterizes a curve γ. Integrating ez along γ directly would be fairly
painful, but if we note that its starting point is z(0) = 0 + i and end point is

z(π/2) = (π/2)2 + ei, then this integral equals e(π/2)
2+ei − ei.

• The integral of any polynomial along any closed curve is 0, since a polynomial
has a primitive on all of C. (For example, zn has the primitive zn+1/(n+ 1).)
• Notice that 1/z is continuous when z 6= 0. Nevertheless, we claim that 1/z

has no primitive on all of C − 0. In particular, there is no way to extend
log x defined on positive reals to the punctured complex plane. Indeed, if 1/z
did have a primitive on C− 0, then

∫
S1 1/z dz would equal 0, but we already

saw that this integral equals 2πi by direct calculation. So be ABSOLUTELY
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SURE that f has a primitive on all of γ if you want to apply the above
theorems or any of its corollaries!

We have proven the following corollaries essentially using other means (in partic-
ular, one can apply the solution to the problem on functions with constant real or
imaginary part on a previous homework set), but we provide a different proof using
these new ideas:

Corollary 4. Suppose f(z) is holomorphic on a region (ie, open connected set) Ω,
and suppose f ′(z) = 0 for all z ∈ Ω. Then f(z) is constant on Ω.

Proof. Pick any z0 in Ω. Since Ω is connected, we can find a path γ connecting z0 to
z. As a matter of fact, we can select γ to be piecewise-smooth; for example, recall
that z0 and z can actually be connected via a polygonal path, which is obviously
piecewise-smooth. Then ∫

γ

f ′(z) dz = f(z)− f(z0) = 0,

since f is a primitive for f ′ in Ω, and f ′(z) = 0 everywhere. Therefore f(z) = f(z0);
since z was arbitrary this means that f is constant and equal to f(z0) on all of Ω. �
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