- The preliminary exam is Friday.
- The exam is in two parts. The "in-class" part taken during our lecture period and a short "take-home" part due Monday prior to the start of class.
- Just as in the sample exam, the in-class part is primarily objective concentrating on definitions, statements of results, and what I believe to be straightforward computations or short arguments.
- The exam covers everything we did through and including section 3.5 in the text. There is nothing from Chapter 4.
- Because of the exam, this week, our homework is due on Wednesday.

Last Time

Definition

Suppose that γ is a directed smooth curve with admissible parameterization $z:[a, b] \rightarrow \mathbb{C}$. If f is continuous on γ, then the contour integral of f along γ is

$$
\begin{equation*}
\int_{\gamma} f(z) d z:=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t \tag{1}
\end{equation*}
$$

If $\Gamma=\gamma_{1}+\cdots+\gamma_{n}$ and f is continuous on Γ, then the contour integral of f along Γ is

$$
\int_{\Gamma} f(z) d z:=\sum_{k=1}^{n} \int_{\gamma_{k}} f(z) d z .
$$

Remark

The value of (1) is independent of our choice of an admissible parameterization for γ.

Theorem

Let C_{r} be the positively oriented circle of radius r centered at z_{0} ． Then for any $n \in \mathbf{Z}$ ，

$$
\int_{C_{r}}\left(z-z_{0}\right)^{n} d z= \begin{cases}2 \pi i & \text { if } n=-1, \text { and } \\ 0 & \text { if } n \neq-1\end{cases}
$$

Estimates

Proposition

If $z:[a, b] \rightarrow \mathbb{C}$ is continuous，then

$$
\left|\int_{a}^{b} z(t) d t\right| \leq \int_{a}^{b}|z(t)| d t
$$

Theorem

Suppose that $|f(z)| \leq M$ for all z in a contour Γ ．Then

$$
\left|\operatorname{int}_{\Gamma} f(z) d z\right| \leq M \ell(\Gamma)
$$

Observation

- Suppose that f is continuous on the contour $\Gamma=\gamma_{1}+\cdots+\gamma_{n}$ and that $z:[a, b] \rightarrow \mathbb{C}$ is an admissible parameterization of Γ.
- That means there is a partition $\left\{a=\tau_{0}<\tau_{1}<\cdots<t_{n}=b\right\}$ of $[a, b]$ such that the restriction of z to $\left[\tau_{k-1}, \tau_{k}\right]$ is an admissible paramterization of γ_{k} for $k=1, \ldots, n$.
- Thus

$$
\begin{aligned}
\int_{\Gamma} f(z) d z & =\sum_{k=1}^{n} \int_{\gamma_{k}} f(z) d z=\sum_{k=1}^{n} \int_{\tau_{k-1}}^{\tau_{k}} f(z(t)) z^{\prime}(t) d t \\
& =\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
\end{aligned}
$$

- If Γ consists of a single point z_{0}, then we define $\int_{\Gamma} f(z) d z$ to be zero. This is consistent with saying that the constant function $z:[a, b] \rightarrow C$ given by $z(t)=z_{0}$ is an admissible parameterization of Γ and "evaluating"

$$
\int_{\Gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

