The Complex Exponential Function

Theorem

(1) We have $e^{z}=1$ if and only if $z=2 \pi$ ik for some $k \in \mathbb{Z}$.
(2) We have $e^{z}=e^{w}$ if and only if $z=w+2 \pi i k$ for some $k \in \mathbb{Z}$.

Corollary

The complex exponential function $f(z)=e^{z}$ is periodic of period $2 \pi i$. Hence the behavior of $z \mapsto e^{z}$ is identical in every strip of the form

$$
S_{n}=\{z \in \mathbb{C}:(2 n-1) \pi<\operatorname{Im}(z) \leq(2 n+1) \pi\} \quad \text { for } n \in \mathbb{Z}
$$

More Toys

Definition

For all $z \in \mathbb{C}$ we define

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2} \quad \text { and } \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Theorem

$f(z)=\cos (z)$ and $g(z)=\sin (z)$ are entire and periodic of period 2π. Furthermore,

$$
\frac{d}{d z}(\cos (z))=-\sin (z) \quad \text { and } \quad \frac{d}{d z}(\sin (z))=\cos (z)
$$

for all $z \in \mathbb{C}$.

The Complex Logarithm

Definition

If $z \neq 0$, then we define

$$
\log (z)=\ln (|z|)+i \arg (z)=\{\ln (|z|)+i y: y \in \arg (z)\}
$$

Definition

We define the principal branch of $\log (z)$ to be the function

$$
\log (z)=\ln (|z|)+i \operatorname{Arg}(z) \quad \text { for all } z \neq 0
$$

