Theorem

1 We have
$$e^z = 1$$
 if and only if $z = 2\pi ik$ for some $k \in \mathbb{Z}$.

2 We have $e^z = e^w$ if and only if $z = w + 2\pi ik$ for some $k \in \mathbb{Z}$.

Corollary

The complex exponential function $f(z) = e^z$ is periodic of period $2\pi i$. Hence the behavior of $z \mapsto e^z$ is identical in every strip of the form

$$S_n = \{ z \in \mathbb{C} : (2n-1)\pi < \operatorname{Im}(z) \le (2n+1)\pi \} \text{ for } n \in \mathbb{Z}.$$

More Toys

Definition

For all $z \in \mathbb{C}$ we define

$$\cos(z) = rac{e^{iz}+e^{-iz}}{2}$$
 and $\sin(z) = rac{e^{iz}-e^{-iz}}{2i}.$

Theorem

 $f(z) = \cos(z)$ and $g(z) = \sin(z)$ are entire and periodic of period 2π . Furthermore,

$$\frac{d}{dz}(\cos(z)) = -\sin(z)$$
 and $\frac{d}{dz}(\sin(z)) = \cos(z)$

for all $z \in \mathbb{C}$.

Definition

If $z \neq 0$, then we define

$$\log(z) = \ln(|z|) + i \arg(z) = \{ \ln(|z|) + iy : y \in \arg(z) \}.$$

Definition

We define the principal branch of log(z) to be the function

$$Log(z) = ln(|z|) + i Arg(z)$$
 for all $z \neq 0$.