Fields

Definition

A field is a set \mathbf{F} containing at least two elements 0 and 1 equipped with operations + and . such that for all $x, y, z \in \mathbf{F}$ we have $x+y \in \mathbf{F}$ and $x \cdot y=x y \in \mathbf{F}$ and

1) $x+y=y+x$
2) $\quad x y=y x$
3) $x+(y+z)=(x+y)+z$
4) ${ }^{\prime}$
$x(y z)=(x y) z$
$x+0=x$
5) ${ }^{\prime}$
$x \cdot 1=x$
6) there exists $-x$ 4) if $x \neq 0$ there exists x^{-1} such that $-x+x=0$ such that $x x^{-1}=1$, and 5) $x(y+z)=x y+y z$.

Example

Of course our favorite example of a field is the field of rational
numbers $\mathbf{Q}=\left\{\frac{a}{b}: a \in \mathbb{Z}\right.$ and $\left.b \in \mathbf{N}\right\}$. But there are lots of others.

Fields

Definition

A field is a set \mathbf{F} containing at least two elements 0 and 1 equipped with operations + and . such that for all $x, y, z \in \mathbf{F}$ we have $x+y \in \mathbf{F}$ and $x \cdot y=x y \in \mathbf{F}$ and

1) $x+y=y+x$
2) $x+(y+z)=(x+y)+z$

$$
x+0=x
$$

1) ${ }^{\prime}$

$$
x y=y x
$$

2)
3) ${ }^{\prime}$

$$
x(y z)=(x y) z
$$

$$
x \cdot 1=x
$$

4) there exists $-x \quad 4)^{\prime}$ if $x \neq 0$ there exists x^{-1} such that $-x+x=0$ such that $x x^{-1}=1$, and 5) $x(y+z)=x y+y z$.

Example

Of course our favorite example of a field is the field of rational numbers $\mathbf{Q}=\left\{\frac{a}{b}: a \in \mathbb{Z}\right.$ and $\left.b \in \mathbf{N}\right\}$. But there are lots of others.

A Field with Four Elements

Example

Let $\mathbf{F}=\{0,1, a, b\}$. Then define addition and multiplication as follows

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

Then it is possible to show that \mathbf{F} is a field. However in all honesty, it would be tedious beyond belief to check this directly.
Fortunately, there are other techniques-from abstract algebra-that allow us to see this from general principles.

Ordered Fields

Definition

We say that a field \mathbf{F} is ordered if there is a subset $P \subset \mathbf{F} \backslash\{0\}$ such that
(1) \mathbf{F} is the disjoint union of $P,\{0\}$, and $-P$.
(2) If $a, b \in P$, then $a+b \in P$ and $a b \in P$.

We say that $x>0$ if $x \in P$ and $x<y$ if $y-x \in P$. We call the pair (\mathbf{F}, P), or sometimes $(F,<)$ an ordered field.

[^0]
Ordered Fields

Definition

We say that a field \mathbf{F} is ordered if there is a subset $P \subset \mathbf{F} \backslash\{0\}$ such that
(1) \mathbf{F} is the disjoint union of $P,\{0\}$, and $-P$.
(2) If $a, b \in P$, then $a+b \in P$ and $a b \in P$.

We say that $x>0$ if $x \in P$ and $x<y$ if $y-x \in P$. We call the pair (\mathbf{F}, P), or sometimes $(F,<)$ an ordered field.

Remark

If a is an element in an ordered field, either a is positive, $-a$ is positive, or $a=0$. Alternatively, given a, b in an ordered field, either $a<b, b<a$, or $a=b$.

Ordered Fields

Definition

We say that a field \mathbf{F} is ordered if there is a subset $P \subset \mathbf{F} \backslash\{0\}$ such that
(1) \mathbf{F} is the disjoint union of $P,\{0\}$, and $-P$.
(2) If $a, b \in P$, then $a+b \in P$ and $a b \in P$.

We say that $x>0$ if $x \in P$ and $x<y$ if $y-x \in P$. We call the pair (\mathbf{F}, P), or sometimes $(F,<)$ an ordered field.

Remark

If a is an element in an ordered field, either a is positive, $-a$ is positive, or $a=0$. Alternatively, given a, b in an ordered field, either $a<b, b<a$, or $a=b$.

Example

Let $P=\left\{\frac{a}{b} \in \mathbf{Q}: a, b \in \mathbf{N}\right\}$. Then (\mathbf{Q}, P) is an ordered field that we've held dear to our hearts since grade school.

[^0]: Remark
 If a is an element in an ordered field, either a is positive, $-a$ is positive, or $a=0$. Alternatively, given a, b in an ordered field, either $a<b, b<a$, or $a=b$.

