Trigonometric Integrals

• Observe that if we parameterize the positively oriented circle |z| = 1 by $z(t) = e^{i\theta}$ for $\theta \in [0, 1]$ then

$$\int_{|z|=1} F(z) \, dz = \int_0^{2\pi} F(e^{i\theta}) i e^{i\theta} \, d\theta.$$

• Furthermore, if $z = e^{i\theta}$ lies on the circle |z| = 1, then

$$\cos(\theta) = \frac{1}{2}\left(z + \frac{1}{z}\right)$$
 while $\sin(\theta) = \frac{1}{2i}\left(z - \frac{1}{z}\right)$.

Theorem

Suppose that U(x, y) is a rational function such that $U(\cos(\theta), \sin(\theta))$ is defined for all θ . Then

$$\int_0^{2\pi} U(\cos(\theta), \sin(\theta)) d\theta = \oint_{|z|=1} F(z) dz = 2\pi i \sum_{|z|<1} \operatorname{Res}(F; z)$$

where

$$F(z) = U\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2i}\left(z-\frac{1}{z}\right)\right) \cdot \frac{1}{iz}.$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のへで

Theorem (Basic Limit Lemma)

Let C_R^+ be the top half of the positively oriented circle |z| = R from *R* to -R. Suppose that p(z) and q(z) are polynomials such that

 $\deg p(z) + 2 \leq \deg q(z).$

If
$$a \ge 0$$
 and

$$\mathsf{F}(z)=rac{\mathsf{p}(z)}{q(z)}\mathsf{e}^{iaz},$$

then

$$\lim_{R\to\infty}\int_{C_R^+}F(z)\,dz=0.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ④ ○ ○

Improper Riemann Integrals

Recall that a continuous function on **R** is integrable if $\int_{-\infty}^{\infty} f(x) dx$ exists (or some would say converges). This means both the limits

$$L = \lim_{R \to \infty} \int_{-R}^{0} f(x) dx$$
 and $M = \lim_{R \to \infty} \int_{0}^{R} f(x) dx$

exist (and are finite). Then $\int_{-\infty}^{\infty} f(x) dx = L + M$. This is not quite the same as saying that the Cauchy Principal Value

p.v.
$$\int_{-\infty}^{\infty} f(x) dx := \lim_{R \to \infty} \int_{-R}^{R} f(x) dx$$

exists. (Consider f(x) = x.) Nevertheless, if f is integrable, then

$$\int_{-\infty}^{\infty} f(x) \, dx = \text{p.v.} \int_{-\infty}^{\infty} f(x) \, dx.$$

Existence of Improper Integrals

Theorem (Comparison Test)

Let f and g be continuous functions on the real line. Suppose that g is integrable and non-negative on **R**. Then if $|f(x)| \le g(x)$ for all $x \in \mathbf{R}$, then f is integrable.

Corollary

Suppose that p(x) and q(x) are polynomials with real coefficients. Suppose also the deg $p(x) + 2 \le deg q(x)$ and q(x) has no real roots. Then

$$f(x)=\frac{p(x)}{q(x)}$$

is integrable.

Remark

This means that we can drop the "p.v." from our formulas in the next result.

Another Formula

Theorem

Suppose that p(z) and q(z) are polynomials with real coefficients such that deg $p(z) + 2 \le \deg q(z)$ and such that q(x) has no real roots. Suppose that $a \ge 0$ and

$$\mathsf{F}(z) = rac{\mathsf{p}(z)}{\mathsf{q}(z)} e^{iaz}$$

Then

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) \, dx = \operatorname{Re}\left(2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z)\right)$$

and

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) \, dx = \operatorname{Im} \left(2\pi i \sum_{|\operatorname{Im} z > 0} \operatorname{Res}(F; z) \right). \tag{1}$$

Remark

Note that if a = 0 in the above result, then (1) is zero and $2\pi i \sum_{\lim z>0} \text{Res}(F; z)$ must be real.

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that p(z) and q(z) are polynomials with real coefficients such that deg $p(z) + 1 \le \deg q(z)$ and such that q(x) has no real roots. Suppose that a > 0 and

$$F(z)=rac{p(z)}{q(z)}e^{iaz}.$$

Then

$$p.v. \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) \, dx = \operatorname{Re}\left(2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z)\right)$$

and

$$p.v. \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) \, dx = \operatorname{Im} \Big(2\pi i \sum_{|\operatorname{Im} z>0} \operatorname{Res}(F; z) \Big).$$

It turns out we can drop the "p.v."s. Trust me.

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that p(z) and q(z) are polynomials with real coefficients such that deg $p(z) + 1 \le \deg q(z)$ and such that q(x) has no real roots. Suppose that a > 0 and

$$F(z)=rac{p(z)}{q(z)}e^{iaz}.$$

Then

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos(ax) \, dx = \operatorname{Re}\left(2\pi i \sum_{\operatorname{Im} z > 0} \operatorname{Res}(F; z)\right)$$

and

$$\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin(ax) \, dx = \operatorname{Im} \Big(2\pi i \sum_{|\operatorname{Im} z > 0} \operatorname{Res}(F; z) \Big).$$

It turns out we can drop the "p.v."s. Trust me.