Trigonometric Integrals

- Observe that if we parameterize the positively oriented circle $|z|=1$ by $z(t)=e^{i \theta}$ for $\theta \in[0,1]$ then

$$
\int_{|z|=1} F(z) d z=\int_{0}^{2 \pi} F\left(e^{i \theta}\right) i e^{i \theta} d \theta
$$

- Furthermore, if $z=e^{i \theta}$ lies on the circle $|z|=1$, then

$$
\cos (\theta)=\frac{1}{2}\left(z+\frac{1}{z}\right) \quad \text { while } \quad \sin (\theta)=\frac{1}{2 i}\left(z-\frac{1}{z}\right) .
$$

Formulas

Theorem

Suppose that $U(x, y)$ is a rational function such that $U(\cos (\theta), \sin (\theta))$ is defined for all θ. Then

$$
\int_{0}^{2 \pi} U(\cos (\theta), \sin (\theta)) d \theta=\oint_{|z|=1} F(z) d z=2 \pi i \sum_{|z|<1} \operatorname{Res}(F ; z)
$$

where

$$
F(z)=U\left(\frac{1}{2}\left(z+\frac{1}{z}\right), \frac{1}{2 i}\left(z-\frac{1}{z}\right)\right) \cdot \frac{1}{i z} .
$$

Theorem (Basic Limit Lemma)

Let C_{R}^{+}be the top half of the positively oriented circle $|z|=R$ from R to $-R$. Suppose that $p(z)$ and $q(z)$ are polynomials such that

$$
\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)
$$

If $a \geq 0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} F(z) d z=0
$$

Improper Riemann Integrals

Recall that a continuous function on \mathbf{R} is integrable if $\int_{-\infty}^{\infty} f(x) d x$ exists (or some would say converges). This means both the limits

$$
L=\lim _{R \rightarrow \infty} \int_{-R}^{0} f(x) d x \text { and } M=\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x
$$

exist (and are finite). Then $\int_{-\infty}^{\infty} f(x) d x=L+M$. This is not quite the same as saying that the Cauchy Principal Value

$$
\text { p.v. } \int_{-\infty}^{\infty} f(x) d x:=\lim _{R \rightarrow \infty} \int_{-R}^{R} f(x) d x
$$

exists. (Consider $f(x)=x$.) Nevertheless, if f is integrable, then

$$
\int_{-\infty}^{\infty} f(x) d x=\text { p.v. } \int_{-\infty}^{\infty} f(x) d x
$$

Existence of Improper Integrals

Theorem (Comparison Test)

Let f and g be continuous functions on the real line. Suppose that g is integrable and non-negative on \mathbf{R}. Then if $|f(x)| \leq g(x)$ for all $x \in \mathbf{R}$, then f is integrable.

Corollary

Suppose that $p(x)$ and $q(x)$ are polynomials with real coefficients. Suppose also the $\operatorname{deg} p(x)+2 \leq \operatorname{deg} q(x)$ and $q(x)$ has no real roots. Then

$$
f(x)=\frac{p(x)}{q(x)}
$$

is integrable.

Remark

This means that we can drop the "p.v." from our formulas in the next result.

Another Formula

Theorem

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+2 \leq \operatorname{deg} q(z)$ and such that $q(x)$ has no real roots. Suppose that $a \geq 0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) \tag{1}
\end{equation*}
$$

Remark

Note that if $a=0$ in the above result, then (1) is zero and $2 \pi i \sum_{\operatorname{lm} z>0} \operatorname{Res}(F ; z)$ must be real.

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(x)$ has no real roots. Suppose that $a>0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
$$

and

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) .
$$

It turns out we can drop the "p.v."s.

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(x)$ has no real roots. Suppose that $a>0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
$$

and

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) .
$$

It turns out we can drop the "p.v."s. Trust me.

