Jordan's Lemma

Theorem (Jordan's Lemma)

Suppose that $p(z)$ and $q(z)$ are polynomials with

$$
\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)
$$

Let a >0 and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

This if C_{R}^{+}is the top half of the circle $|z|=R$ from R to $-R$, then

$$
\lim _{R \rightarrow \infty} \int_{C_{R}^{+}} F(z) d z=0
$$

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(x)$ has no real roots. Suppose that $a>0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
$$

and

$$
\text { p.v. } \int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) .
$$

It turns out we can drop the "p.v."s.

An Improved Formula

Now using Jordan's Lemma in place of the Basic Limit Lemma:

Theorem

Suppose that $p(z)$ and $q(z)$ are polynomials with real coefficients such that $\operatorname{deg} p(z)+1 \leq \operatorname{deg} q(z)$ and such that $q(x)$ has no real roots. Suppose that $a>0$ and

$$
F(z)=\frac{p(z)}{q(z)} e^{i a z}
$$

Then

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \cos (a x) d x=\operatorname{Re}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right)
$$

and

$$
\int_{-\infty}^{\infty} \frac{p(x)}{q(x)} \sin (a x) d x=\operatorname{Im}\left(2 \pi i \sum_{\operatorname{Im} z>0} \operatorname{Res}(F ; z)\right) .
$$

It turns out we can drop the "p.v."s. Trust me.

Indented Contours

Theorem

Suppose that f has a simple pole at z_{0}. Let $C_{r}\left(\theta_{1}, \theta_{2}\right)$ be the arc of the positively oriented circle $\left|z-z_{0}\right|=r$ parameterized by $z(t)=z_{0}+r e^{i t}$ with $t \in\left[\theta_{1}, \theta_{2}\right]$. Then

$$
\lim _{r \searrow 0} \int_{C_{r}\left(\theta_{1}, \theta_{2}\right)} f(z) d z=\left(\theta_{2}-\theta_{1}\right) i \operatorname{Res}\left(f ; z_{0}\right)
$$

