Suppose that f is analytic in $B_R(z_0)$ with Taylor series

$$f(z)=\sum_{n=0}^{\infty}a_n(z-z_0)^n.$$

Then the Taylor series for the derivative f' in $B_R(z_0)$ is given by term-by-term differentiation:

$$f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}.$$
 (1)

(日)(四)(四)(四)(四)(四)(四)

Suppose that f and g are analytic at z_0 with Taylor series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$.

Then the Taylor series for h = fg about z_0 is given by the Cauchy product

$$h(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$$

where

$$c_n=\sum_{k=0}^n a_k b_{n-k}.$$

(ロ・・四・・日・・日・ つんぐ

Example (MacLaurin Series for tan z)

Here is

$$\tan(z) = z + \frac{z^3}{3} + \frac{2z^5}{15} + \frac{17z^7}{315} + \frac{62z^9}{2835} + \frac{1382z^{11}}{155925} + \frac{21844z^{13}}{6081075} + \frac{929569z^{15}}{638512875} + \dots$$

ヘロア 人間 アメヨア 人間 アー

æ

Let

$$\sum_{n=0}^{\infty}a_n(z-z_0)^n$$

be a power series about z_0 . Then there is a R such that $0 \le R \le \infty$ and such that

- The series converges absolutely if $|z z_0| < R$.
- 2 The series converges uniformly on any subdisk

$$D_r = \{ z \in \mathbf{C} : |z - z_0| \le r \}$$

provided that 0 < r < R.

3 The series diverges if
$$|z - z_0| > R$$
.

Suppose that (f_n) is a sequence of continuous complex-valued functions converging uniformly to f on a set D. Then f is continuous on D.

Theorem

Suppose that (f_n) is a sequence of continuous complex-valued functions converging uniformly to f on a set D. Then if Γ is any contour in D,

$$\int_{\Gamma} f(z) \, dz = \lim_{n \to \infty} \int_{\Gamma} f_n(z) \, dz.$$

Theorem

Suppose that (f_n) is a sequence of analytic complex-valued functions converging uniformly to f on a domain D. Then f is analytic on D.

Suppose that $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ has a positive radius of convergence R > 0. Then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (2)

is analytic in $D = B_R(z_0)$. Moreover

$$a_n=\frac{f^{(n)}(z_0)}{n!},$$

and (2) is the Taylor series for f about z_0 .

(日本・西本・山田を・山田) ちょうし