Residues

Definition

If f has an isolated singularity at z_0 with Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
(1)

for $z \in B'_R(z_0)$ with R > 0, then we call b_1 the residue of f at z_0 and write $\operatorname{Res}(f; z_0) = b_1$.

Remark

If f has an isolated singularity at z_0 with Laurent series given by (1) in $B'_R(z_0)$ and if Γ is any positively oriented contour in $B'_R(z_0)$ with z_0 in its interior, then

$$\int_{\Gamma} f(z) \, dz = 2\pi i \operatorname{Res}(f; z_0).$$

Proposition

If f has a simple pole at z_0 , then

$$\operatorname{Res}(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z).$$

Conversely, if z_0 is an isolated singularity for f and

$$\lim_{z\to z_0}(z-z_0)f(z)=L\neq 0,$$

周▶▲臣

then z_0 is a simple pole and $\operatorname{Res}(f; z_0) = L$.

Lemma (Basic Simple Pole Lemma)

If g and h are analytic at z_0 such that $g(z_0) \neq 0$ and such that h has a simple zero at z_0 , then

$$f(z) := \frac{g(z)}{h(z)}$$

has a simple pole at z_0 and

$$\operatorname{Res}(f; z_0) = \frac{g(z_0)}{h'(z_0)}.$$

Lemma

Suppose that f has a pole of order m at z_0 . Then

$$\operatorname{Res}(f; z_0) = \frac{1}{(m-1)!} \lim_{z \to z_0} \frac{d^{m-1}}{dz^{m-1}} ((z-z_0)^m f(z)).$$

ヘロア 人間 アメヨア 人間 アー

æ

Theorem (Cauchy Residue Theorem)

Suppose that f is analytic on and inside a simple closed contour Γ except for isolated singularities at z_1, \ldots, z_n inside of Γ . Then

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(f; z_k).$$
(2)

Remark (Notation)

We often write (2) as

$$\int_{\Gamma} f(z) \, dz = 2\pi i \sum_{z \text{ inside } \Gamma} \operatorname{Res}(f; z)$$

with the understanding that the sum is finite since Res(f; z) = 0 if z is not a pole or essential singularity.