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1 A Proof of Riemann’s Theorem

Theorem 1. Let Γ be a contour in the plane and suppose that g is continuous on Γ.
Let D = { z ∈ C : z /∈ Γ }. For each n ≥ 1 define

Fn(z) =

∫
Γ

g(w)

(w − z)n
dw for all z ∈ D.

Then Fn is analytic on D and for all z ∈ D we have

F ′n(z) = nFn+1(z). (1)

Proof. Fix z0 ∈ D. Since D is open, there is a δ > 0 such that B2δ(z0) ⊂ D.
Therefore

|w − z0| ≥ 2δ for all w ∈ Γ.

Since
1

w − z
− 1

w − z0

=
z − z0

(w − z)(w − z0)
, (2)

it follows that

F1(z)− F1(z0) =

∫
Γ

( 1

w − z
− 1

w − z0

)
g(w) dw

= (z − z0)

∫
Γ

g(w)

(w − z)(w − z0)
dw (3)

Since Γ is a closed and bounded subset of C, M := maxw∈Γ |g(w)| is finite. Thus
if 0 < |z − z0| < δ, then

|w − z| ≥ |w − z0| − |z − z0| ≥ δ,
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and it follows that

|F1(z)− F1(z0)| ≤ M`(Γ)

2δ2
|z − z0|. (4)

Using (4), it follows that
lim
z→z0
|F1(z)− F1(z0)| = 0.

Therefore F1 is continuous at z0.
For each n ≥ 1, let

Gn(z) =

∫
Γ

g(w)

(w − z)n(w − z0)
dw for all z ∈ D.

Keep in mind that
Gn(z0) = Fn+1(z0). (5)

Notice that

g̃(w) =
g(w)

w − z0

is continuous on Γ and that

Gn(z) =

∫
Γ

g̃(z)

(w − z)n
dz.

Thus we can repeat the argument above with g̃ in place of g to conclude that G1 is
continuous at z0.

Part of the point of introducing G1 is that using (3) we have

F1(z)− F1(z0)

z − z0

=

∫
Γ

g(w)

(w − z)(w − z0)
dw = G1(z).

Hence using (5) and the continuity of G1 we have

F2(z0) = G1(z0) = lim
z→z0

G(z) = lim
z→z0

F1(z)− F0(z0)

z − z0

.

That is, F1 is differentiable at z0 and F ′1(z0) = F2(z0).
Since z0 ∈ D was arbitrary, we’ve proved the result in the case that n = 1.
We now proceed by induction. Thus we assume that for some n ≥ 2, we estab-

lished that
F ′n−1(z0) = (n− 1)Fn(z0).
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It will suffice to show that F ′n(z0) = nFn+1(z0). Note that after replacing g by g̃, we
can also assume that

G′n−1(z0) = (n− 1)Gn(z0).

After re-writing (2) as

1

w − z
=

1

w − z0

+
z − z0

(w − z)(w − z0)
,

we have

Fn(z) =

∫
Γ

g(w)

(w − z)n
dw =

∫
Γ

g(w)

(w − z)n−1(w − z)
dw

=

∫
Γ

g(w)

(w − z)n−1(w − z0)
dw + (z − z0)

∫
Γ

g(w)

(w − z)n(w − z0)
dw

= Gn−1(z) + (z − z0)Gn(z).

Plugging this into Fn(z)− Fn(z0) = Fn(z)−Gn−1(z0) gives us

Fn(z)− Fn(z0) = Gn−1(z)−Gn−1(z0) + (z − z0)Gn(z). (6)

Assuming 0 < |z − z0| < δ as above, then

|Gn(z)| =
∣∣∣∫

Γ

g(w)

(w − z)n(w − z0)
dw
∣∣∣ ≤ M`(Γ)

2δn+1
.

Therefore

|Fn(z)− Fn(z0)| ≤ |Gn−1(z)−Gn−1(z0)|+ M`Γ)

2δn+1
|z − z0|. (7)

Since Gn−1 is differentiable at z0, it must be continuous there. It then follows
from (7) that

lim
z→z0
|Fn(z)− Fn(z0)| = 0.

Therefore Fn is continuous at z0 as is Gn.
We now use (6) to see that

lim
z→z0

Fn(z)− Fn(z0)

z − z0

= lim
z→z0

(Gn−1(z)−Gn−1(z0)

z − z0

+Gn(z)
)

= G′n−1(z0) +Gn(z0)

= (n− 1)Gn(z0) +Gn(z0)

= nGn(z0) = nFn+1(z0).
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Thus F ′(z0) exists and equals nFn+1(z0) as required. Since z0 is arbitrary, we’re
done.

Corollary 2. Let g, Γ, and Fn be as in the statement of Theorem 1. Then F1 has
derivatives of all orders and

F
(n)
1 (z) = n!Fn+1(z) for all z ∈ D.

Proof. We have F ′1(z) = F2(z) by Theorem 1 in the case that n = 1. Assume that

for some n ≥ 2, we’ve proved that F
(n−1)
1 (z) = (n− 1)!Fn(z). Then by (1),

F
(n)
1 (z) = (n− 1)!F ′n(z) = n!Fn+1(z).

Corollary 3. Suppose that f is analytic on and inside a simple closed contour Γ and
that D is the interior of Γ. Then f has derivatives of all orders on D and for each
z ∈ D and n ≥ 0 we have

f (n)(z) =
n!

2πi

∫
Γ

f(w)

(w − z)n+1
dw.

Proof. Let Fn be as in Theorem 1 with g = f . Then the Cauchy Integral Formula
implies that

F1(z) = 2πif(z) for all z ∈ D.

Now by Corollary 2, f has derivatives of all orders and

2πif (n)(z) = F
(n)
1 (z) = n!Fn+1(z) = n!

∫
Γ

f(w)

(w − z)n+1
dw.

Theorem 4. Suppose that f is analytic in a domain D. Then f ′ is analytic in D.
Therefore f has derivatives of all orders in D.

Proof. Fix z0 ∈ D. It will suffice to see that f ′′(z0) exists. Since D is open, there is
a δ > 0 such that B2δ(z0) ⊂ D. Let Cδ be the positively oriented circle |z − z0| = δ.
Then f is analytic on and inside of Cδ. Since z0 lies inside of Cδ, it follows from
Corollary 3 that f ′′(z0) exists.
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