Riemann’s Theorem
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1 A Proof of Riemann’s Theorem

Theorem 1. Let I' be a contour in the plane and suppose that g is continuous on I'.

Let D={z€C:z¢TI}. Foreachn >1 define

F.(z) = /F (gﬂdw forall z € D.

w— z)"
Then F,, is analytic on D and for all z € D we have
F!(2) =nF,1(2).

(1)

Proof. Fix zy € D. Since D is open, there is a § > 0 such that Bys(z9) C D.

Therefore
|lw— 29| > 26 forallwel.

Since

it follows that

o

—z w-—2

=(z—2 g(w) w
= 0)/r<w—z><w—zO>d

(3)

Since I' is a closed and bounded subset of C, M := maxyer |g(w)] is finite. Thus

if 0 < |z — 20| < 0, then

lw—z| > |w— 2| — |z — 20| >0,



and it follows that

M)

|F1(2) — Fi(20)| < 557

|2 = 2l (4)

Using (4), it follows that
lim |Fi(z) — Fi(20)| = 0.
Z—r20
Therefore F} is continuous at zg.
For each n > 1, let

Gn(z) = /F (W= z%f"‘léjt)u ) dw for all z € D.
Keep in mind that
Gn(20) = Frs1(20)- (5)
Notice that
wmzj@;

is continuous on I' and that
Gn(z) = / —g(z) dz
r(w—2z)"

Thus we can repeat the argument above with ¢ in place of ¢ to conclude that G is
continuous at zj.
Part of the point of introducing G is that using (3) we have

mm—ﬂuw:/wjgw> dw = Gy(2).

Z— 2 — z)(w — 20)

Hence using (5) and the continuity of Gy we have

Fy(zo) = Ga(20) = lim G(z) = lim 112 = Folz0)

Z—20 Z—20 z — ZO

That is, F] is differentiable at zy and F|(zy) = Fa(2).

Since zy € D was arbitrary, we’ve proved the result in the case that n = 1.

We now proceed by induction. Thus we assume that for some n > 2, we estab-
lished that

Fp1(20) = (n = 1) Fy(z0).



It will suffice to show that F(z9) = nF,11(20). Note that after replacing g by g, we
can also assume that
Gr1(20) = (n = 1)Ga(20).

After re-writing (2) as

1 1 Z— 2

w—z w—zo+(w—z)(w—zo)’

we have

F(z) = /F % dw = /F (w — z)g;ui)(w - z) w
:/F g(w) o+ (z—Zo)/ g(w) dw

(w = 2)"~(w — 2) r(w—2)"(w = 2)
= Gp1(2) + (2 — 20)Gn(2).
Plugging this into F,,(z) — Fy.(z0) = F.(2) — Gp—1(20) gives us
Fo(2) — F(20) = Gpo1(2) — Gn1(20) + (2 — 20) G (2). (6)

Assuming 0 < |z — 29| < J as above, then

B g(w) M(T)
|Gn(2)] = ‘/r (w— 2)"(w — 2) dw| < 20n+1
Therefore
IF2) = Falo)l € 1Ger() = GooalGo)l + o] — 2. )

Since G,,_; is differentiable at zp, it must be continuous there. It then follows
from (7) that
lim |F,(2) — F,(20)] = 0.

Z—20

Therefore F,, is continuous at zg as is G,,.
We now use (6) to see that

lig P < (2R 1 6,0)
= G (20) + G(20)
= (n — 1)Gy(20) + Gu(20)
= nGp(20) = nF,11(20)-




Thus F'(z) exists and equals nF),1(z) as required. Since z, is arbitrary, we’re
done. 0

Corollary 2. Let g, I', and F,, be as in the statement of Theorem 1. Then F| has
derivatives of all orders and

F"(2) = nlF,1(z) forall z € D.

Proof. We have F{(z) = Fy(z) by Theorem 1 in the case that n = 1. Assume that
for some n > 2, we've proved that F\" " (z) = (n — 1)!F,(z). Then by (1),

F(2) = (n— DIF.(2) = nlF,1(2). O

Corollary 3. Suppose that f is analytic on and inside a simple closed contour I" and
that D 1is the interior of I'. Then f has derivatives of all orders on D and for each
z€ D andn >0 we have

f(”)(z) _ n_'/F f(w) dw

21 Jp (w— z)ntl

Proof. Let F,, be as in Theorem 1 with ¢ = f. Then the Cauchy Integral Formula
implies that
Fi(z) =2rmif(z) forall z€ D.

Now by Corollary 2, f has derivatives of all orders and

27m'f(n)(z) = an)(z) = nlFo1(2) = n! / % dw. 0
o (w—

Theorem 4. Suppose that f is analytic in a domain D. Then [ is analytic in D.
Therefore f has derivatives of all orders in D.

Proof. Fix zy € D. It will suffice to see that f”(z) exists. Since D is open, there is
a 0 > 0 such that Bas(z9) C D. Let Cs be the positively oriented circle |z — 2| = 4.
Then f is analytic on and inside of Cs. Since 2 lies inside of Cj, it follows from
Corollary 3 that f”(zy) exists. O



