Riemann's Theorem

April 27, 2019

1 A Proof of Riemann's Theorem

Theorem 1. Let Γ be a contour in the plane and suppose that g is continuous on Γ . Let $D = \{ z \in \mathbf{C} : z \notin \Gamma \}$. For each $n \ge 1$ define

$$F_n(z) = \int_{\Gamma} \frac{g(w)}{(w-z)^n} \, dw \quad \text{for all } z \in D.$$

Then F_n is analytic on D and for all $z \in D$ we have

$$F'_{n}(z) = nF_{n+1}(z).$$
 (1)

Proof. Fix $z_0 \in D$. Since D is open, there is a $\delta > 0$ such that $B_{2\delta}(z_0) \subset D$. Therefore

$$|w - z_0| \ge 2\delta$$
 for all $w \in \Gamma$.

Since

$$\frac{1}{w-z} - \frac{1}{w-z_0} = \frac{z-z_0}{(w-z)(w-z_0)},$$
(2)

it follows that

$$F_1(z) - F_1(z_0) = \int_{\Gamma} \left(\frac{1}{w - z} - \frac{1}{w - z_0} \right) g(w) \, dw$$

= $(z - z_0) \int_{\Gamma} \frac{g(w)}{(w - z)(w - z_0)} \, dw$ (3)

Since Γ is a closed and bounded subset of \mathbf{C} , $M := \max_{w \in \Gamma} |g(w)|$ is finite. Thus if $0 < |z - z_0| < \delta$, then

$$|w - z| \ge |w - z_0| - |z - z_0| \ge \delta$$
,

and it follows that

$$|F_1(z) - F_1(z_0)| \le \frac{M\ell(\Gamma)}{2\delta^2} |z - z_0|.$$
(4)

Using (4), it follows that

$$\lim_{z \to z_0} |F_1(z) - F_1(z_0)| = 0.$$

Therefore F_1 is continuous at z_0 .

For each $n \ge 1$, let

$$G_n(z) = \int_{\Gamma} \frac{g(w)}{(w-z)^n (w-z_0)} \, dw \quad \text{for all } z \in D.$$

Keep in mind that

$$G_n(z_0) = F_{n+1}(z_0). (5)$$

Notice that

$$\tilde{g}(w) = \frac{g(w)}{w - z_0}$$

is continuous on Γ and that

$$G_n(z) = \int_{\Gamma} \frac{\tilde{g}(z)}{(w-z)^n} \, dz.$$

Thus we can repeat the argument above with \tilde{g} in place of g to conclude that G_1 is continuous at z_0 .

Part of the point of introducing G_1 is that using (3) we have

$$\frac{F_1(z) - F_1(z_0)}{z - z_0} = \int_{\Gamma} \frac{g(w)}{(w - z)(w - z_0)} \, dw = G_1(z).$$

Hence using (5) and the continuity of G_1 we have

$$F_2(z_0) = G_1(z_0) = \lim_{z \to z_0} G(z) = \lim_{z \to z_0} \frac{F_1(z) - F_0(z_0)}{z - z_0}.$$

That is, F_1 is differentiable at z_0 and $F'_1(z_0) = F_2(z_0)$.

Since $z_0 \in D$ was arbitrary, we've proved the result in the case that n = 1.

We now proceed by induction. Thus we assume that for some $n \ge 2$, we established that

$$F_{n-1}'(z_0) = (n-1)F_n(z_0).$$

It will suffice to show that $F'_n(z_0) = nF_{n+1}(z_0)$. Note that after replacing g by \tilde{g} , we can also assume that

$$G'_{n-1}(z_0) = (n-1)G_n(z_0).$$

After re-writing (2) as

$$\frac{1}{w-z} = \frac{1}{w-z_0} + \frac{z-z_0}{(w-z)(w-z_0)},$$

we have

$$F_n(z) = \int_{\Gamma} \frac{g(w)}{(w-z)^n} dw = \int_{\Gamma} \frac{g(w)}{(w-z)^{n-1}(w-z)} dw$$

=
$$\int_{\Gamma} \frac{g(w)}{(w-z)^{n-1}(w-z_0)} dw + (z-z_0) \int_{\Gamma} \frac{g(w)}{(w-z)^n(w-z_0)} dw$$

=
$$G_{n-1}(z) + (z-z_0)G_n(z).$$

Plugging this into $F_n(z) - F_n(z_0) = F_n(z) - G_{n-1}(z_0)$ gives us

$$F_n(z) - F_n(z_0) = G_{n-1}(z) - G_{n-1}(z_0) + (z - z_0)G_n(z).$$
(6)

Assuming $0 < |z - z_0| < \delta$ as above, then

$$|G_n(z)| = \left| \int_{\Gamma} \frac{g(w)}{(w-z)^n (w-z_0)} \, dw \right| \le \frac{M\ell(\Gamma)}{2\delta^{n+1}}$$

Therefore

$$|F_n(z) - F_n(z_0)| \le |G_{n-1}(z) - G_{n-1}(z_0)| + \frac{M\ell\Gamma}{2\delta^{n+1}}|z - z_0|.$$
(7)

Since G_{n-1} is differentiable at z_0 , it must be continuous there. It then follows from (7) that

$$\lim_{z \to z_0} |F_n(z) - F_n(z_0)| = 0.$$

Therefore F_n is continuous at z_0 as is G_n .

We now use (6) to see that

$$\lim_{z \to z_0} \frac{F_n(z) - F_n(z_0)}{z - z_0} = \lim_{z \to z_0} \left(\frac{G_{n-1}(z) - G_{n-1}(z_0)}{z - z_0} + G_n(z) \right)$$
$$= G'_{n-1}(z_0) + G_n(z_0)$$
$$= (n-1)G_n(z_0) + G_n(z_0)$$
$$= nG_n(z_0) = nF_{n+1}(z_0).$$

Thus $F'(z_0)$ exists and equals $nF_{n+1}(z_0)$ as required. Since z_0 is arbitrary, we're done.

Corollary 2. Let g, Γ , and F_n be as in the statement of Theorem 1. Then F_1 has derivatives of all orders and

$$F_1^{(n)}(z) = n! F_{n+1}(z) \text{ for all } z \in D.$$

Proof. We have $F'_1(z) = F_2(z)$ by Theorem 1 in the case that n = 1. Assume that for some $n \ge 2$, we've proved that $F_1^{(n-1)}(z) = (n-1)!F_n(z)$. Then by (1),

$$F_1^{(n)}(z) = (n-1)!F_n'(z) = n!F_{n+1}(z).$$

Corollary 3. Suppose that f is analytic on and inside a simple closed contour Γ and that D is the interior of Γ . Then f has derivatives of all orders on D and for each $z \in D$ and $n \ge 0$ we have

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(w)}{(w-z)^{n+1}} \, dw.$$

Proof. Let F_n be as in Theorem 1 with g = f. Then the Cauchy Integral Formula implies that

$$F_1(z) = 2\pi i f(z)$$
 for all $z \in D$.

Now by Corollary 2, f has derivatives of all orders and

$$2\pi i f^{(n)}(z) = F_1^{(n)}(z) = n! F_{n+1}(z) = n! \int_{\Gamma} \frac{f(w)}{(w-z)^{n+1}} \, dw. \quad \Box$$

Theorem 4. Suppose that f is analytic in a domain D. Then f' is analytic in D. Therefore f has derivatives of all orders in D.

Proof. Fix $z_0 \in D$. It will suffice to see that $f''(z_0)$ exists. Since D is open, there is a $\delta > 0$ such that $B_{2\delta}(z_0) \subset D$. Let C_{δ} be the positively oriented circle $|z - z_0| = \delta$. Then f is analytic on and inside of C_{δ} . Since z_0 lies inside of C_{δ} , it follows from Corollary 3 that $f''(z_0)$ exists.