Definition

If f is analytic at z_0 , then we say that f has a zero of order $m \ge 1$ at z_0 if

$$0 = f(z_0) = f'(z_0) = \cdots = f^{(m-1)}(z_0)$$

and $f^{(m)}(z_0) \neq 0$. If $f^{(n)}(z_0) = 0$ for all $n \ge 0$, then we call z_0 a zero of infinite order.

Theorem

If f is analytic in a domain D and if f has a zero of infinite order in D, then f is identically zero.

Theorem

Suppose that f is a non-constant analytic function on a domain D. If $z_0 \in D$ is a zero of f, then z_0 has finite order $m \ge 1$ and there is an analytic function g on D such that $g(z_0) \ne 0$ and

$$f(z) = (z - z_0)^m g(z)$$
 for all $z \in D$.

Corollary

Suppose that f is a non-constant analytic function on a domain D. Then the zeros of f are isolated. That is, if $z_0 \in D$ and $f(z_0) = 0$, then there is a r > 0 such that

$$f(z) \neq 0$$
 if $z \in B'_r(z_0)$.

Example

Note that

$$g(z) = \sin\left(\frac{\pi}{z}\right)$$

is analytic in $D = B_1(1)$. But $g(\frac{1}{n}) = 0$ for all $n \ge 1$. Since $0 \notin D$, all of the zeros of g are isolated.

Definition

Suppose that f is analytic in $B'_R(z_0)$ for some R > 0. The we call z_0 an isolated singularity for f.

Remark (Key Remark)

Suppose that f has an isolated singularity at z_0 . Then f has a Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$

converging in some $B'_R(z_0)$ with R > 0. The coefficients a_n and b_j depend only on f and are given by the formulas in Laurent's Theorem.

Flavors of Isolated Singularities

Definition

Suppose that f has an isolated singularity at z_0 with associated Laurent series

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{j=1}^{\infty} \frac{b_j}{(z - z_0)^j}$$
 for $z \in B'_R(z_0)$

for R > 0.

- If $b_j = 0$ for all j, then we call z_0 a removable singularity.
- If b_m ≠ 0 and b_j = 0 for all j > m, then we call z₀ a pole of order m.
- If there are infinitely many j such that $b_j \neq 0$, then we call z_0 an essential singularity.

Remark

Note that an isolated singularity must be exactly one of these three types.

Theorem

Suppose that f has an isolated singularity at z_0 . Then the following are equivalent.

- **1** z_0 is a removable singularity for f.
- We can define, or re-define if necessary, f(z₀) so that f is analytic at z₀.

3
$$\lim_{z\to z_0} f(z)$$
 exists (∞ NOT allowed).

• f is bounded near z_0 ; that is, there is a M > 0 and a r > 0such that $|f(z)| \le M$ if $z \in B'_r(z_0)$.