## Math 46: Applied Math: Homework 1

due Wed Apr 8 ... but best if do relevant questions after each lecture

p.7-8: \#2 [hint: what are the dimensions of energy?]
\#5 (be careful to answer, briefly, all questions)
\#6. Please choose your definitions of $s$ and $y$ so the plot is a straight line [Hint: choose $y$ to not involve $v]$. The plot can be a sketch showing intercept and slope.
p.17-19: \#1 (easy),
\#9 'concentration' means mass density; for the last step follow the text above Eqn (1.9) and keep in mind you have freedom to choose convenient dimensionless params that get you to the requested law.
p.30-34: \#3 (it's it nice how 3 parameters $a, b, \rho$ can be reduced to zero parameters by rescaling?) Don't forget to un-rescale when you present your solution for $x(t)$.
\#4 (you should end up with an ODE with a single small parameter $\varepsilon$ - what is it?),
\#10 (now several steps are left up to you; you should end up with only one free parameter).
\#11 (when you reformulate the problem in b , don't forget the initial conditions too. How many ways of nondimensionalizing the problem are there?).
p.40-44: \#1 a, b, c, d, h. These are review of Math 23; keep in mind the tricks on p.38. Sorry about part b, but I have to do this to you to get you back into ODEs! [Hint: save spacetime by abbreviating $s$ for $\sin 2 t$ and $c$ for $\cos 2 t]$.
\#3 Since you've already done a and most of b , finish b and answer the slightly tricky first question in c. In b you'll probably need to look up a vaguely-remembered integral. [Hint for c: to check, do you get the expected time when air resistance vanishes?]

