Math 46: Applied Math: Homework 3

due Wed Apr 22 ... but best if do relevant questions after each lecture

This week, lots of beautiful perturbation theory, both regular and singular.
p.100-104: \#7. The powers of ε you need might be unusual; choose them so that terms in each power can successfully be matched. [Hint: think about related equation $z^{3}=\varepsilon$].
\#14. [Hint: look back at \#4]. Finding the exact solution you don't need to do-I will treat it as a BONUS since I can't do it!
\#16. Fun quick one since little algebra needed. In order to answer the last question please state the error with which the ODE is satisfied (i.e., $\left.F\left(t, y, y^{\prime}, y^{\prime \prime}, \varepsilon\right):=y^{\prime \prime}-\varepsilon t y\right)$.
p.111-112: \#1. b, c.
\#2. Remember to do all three roots.
p.121-123: \#1. a (easy, follow recipe), f (you'll need to resort to a special function familiar from statistics!), h (quick but weird, please explain what's going on), i. [Hint: with all these questions first make sure you know, and state, where (and if) there is a boundary layer! A sketch often helps you and me too]
\#2. Easy but very insightful.
$\# 3$. You don't need to write the uniform approximation. Do explain what goes wrong to cause the usual boundary layer to fail.
\#4. Please give a sketch of the solution.

