Math 46: X hour of 5/14/09: Degenerate Fredholm Equations

Alex Barnett

May 14, 2009

We used Section 4.3.3, particularly Thms 4.12 and 4.13, to determine if the following had a solution, and then solve them. We made use of (4.31) a lot to get $u(x)$ once the \mathbf{c} vector was found.

Let K operator have kernel $k(x, y)=\sin x \sin y$, on the interval $[0, \pi]$
First: Find the eigenvalues and eigenfunctions of K :

Use this to solve the following:

1. $K u-u=\sin 2 x$
2. $K u-u=x$
(We can use Maple to get the integrals $\int_{0}^{\pi} x \sin (n x) d x=\pi(-1)^{n+1} / n$)
3. $K u=3 \sin 2 x$
4. $K u=3 \sin x$.

Answer key:

A is 1 -by- 1 matrix with entry $\pi / 2$. Spectrum of K is then $\pi / 2$ (multiplicity 1 , eigenfunction $\sin x$), and 0 (infinite multiplicity, eigenspace all functions orthog to $\left\{\beta_{j}\right\}$, i.e. orthog to $\sin x$)

1. $c_{1}=0$ so $u=-\sin 2 x$
2. $c_{1}=\frac{\pi}{1-\pi / 2}$ so $u=\frac{\pi}{1-\pi / 2} \sin x-x$
3. no solution
4. $u=\frac{6}{\pi} \sin x+$ (any function orthogonal to $\sin x$). Infinitely-nonunique solution.
