Worksheet \#1: Dimensional Analysis

Say we suspect that drag force F depends only on a sphere's radius a, its speed v, and the surrounding fluid density ρ.

a) What are the dimensions of a, v, ρ and F ?
b) Create the dimensions matrix for this problem.
c) Find a dimensionless combination of the quantities, π.
d) Find $\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right]$ so that $\pi=a^{\alpha_{1}} v^{\alpha_{2}} \rho^{\alpha_{3}} F^{\alpha_{4}}$. Is this choice unique? Find the subspace of all such vectors and find a basis.
e) What is the number of independent dimensionless parameters?
f) What does the Pi Theorem tell us for this problem? How must F depend on a, v, ρ ?
g) If F also depended on visocity η (units $M L^{-1} T^{-1}$) Repeat part e).

