## Worksheet \#13: Volterra integral equations

(1) Convert the following integral equation into an IVP for $u(t)$.

$$
\int_{0}^{t} y u(y) d y-\alpha u(t)=f(t) \quad \text { on } 0 \leq t \leq 1
$$

(2) Prove the lemma:

$$
\int_{a}^{x} \int_{a}^{s} f(y) d y d s=\int_{a}^{x} f(y)(x-y) d y
$$

[Hint: Let $F(s)=\int_{a}^{s} f(y) d y$ and use integration by parts.]
(3) Convert the IVP

$$
\left\{\begin{aligned}
u^{\prime \prime}(t)+q(t) u(t) & =g(t) \\
u(0) & =A \\
u^{\prime}(0) & =B
\end{aligned}\right.
$$

into a Volterra integral equation of the form $K u-\lambda u=f$ where $K u$ is an integral operator.
(4) Now try to convert

$$
u^{\prime \prime}(t)+p(t) u^{\prime}(t)+q(t) u(t)=g(t)
$$

into a second kind Volterra integral equation.

