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In the lighthouse problem, a lighthouse is situated a perpendicular distance x from an infinite straight shore and a distance μ along the shore (see Figure 1).The lighthouse sends out pulses of light at random angles uniformly distributed from π/2 to –π/2, where 

θ = 0 is the line perpendicular to the shore. Let Y be a random variable that gives the distance along the shore measured from the zero-point of the shore. Then Y has a Cauchy probability distribution given by:
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 (see Appendix for derivation). The Cauchy distribution is interesting because it has significant tails; extreme y values are much more likely than in other distributions. In fact, the variance of the Cauchy distribution is infinite.
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Figure 1. The lighthouse problem.

As a MATLAB homework problem, we considered the one-dimensional lighthouse problem in which μ is a parameter, but x is held constant. For this project, I consider the two-dimensional problem in which both μ and x are parameters. The first thing I did was to investigate how changing x changes the shape of the Cauchy pdf. To do this, I made three graphs consisting of a histogram of the location of 1000 light pulses from a lighthouses at x = .5, 1 and 2. For these graphs, I let μ = 0, since changing μ simply shifts the whole distribution. 
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Figure 2. Sample histograms (blue) and Cauchy pdf (red) for x = .5, 1 and 2.
As the graphs in Figure 2 show, the further away from shore the lighthouse is, the more spread out the distribution of light pulses on shore. 
Next, I wanted to look at the likelihood surface for μ and x. To do this, I took samples from the μ = 0, x  = 1 Cauchy distribution and found the likelihood generated by the samples for different μ and x values (see code in glh.m for details). I then plotted the likelihood values as a surface. A likelihood surface for n = 100 samples is shown below in Figure 3. The surface clearly has a peak somewhere near μ = 0, x = 1. In order to see how the likelihood function changed with sample size, I used contour plots and a variety of n values.  Contour plots for n = 10, 32 (~101.5), and 100 are shown below in Figure 4. 
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Figure 3. A 3D likelihood function for the μ = 0, x = 1 Cauchy with 100 samples. 

The contour plots are very interesting. The clearest trend is the concentration of the likelihood in one steep peak with increasing n. The n = 10 likelihood contour plot is very spread out while the n = 100 likelihood is much more concentrated. As n increases, the shape of the likelihood function becomes more and more regular. I expect this increase in regularity comes from the decreasing importance of a few extreme yi values. An interesting extension of these contour plots would be to take a random sample from the Cauchy distribution and add an artificial yn+1 with an extreme positive or negative value and see how much it changed the shape of the likelihood function. 
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Figure 4. Likelihood contour plots for n = 10, 32, 100 (clockwise from top left).

The contour plots also show that it is more difficult to determine x than μ when n is small. This difficulty makes sense intuitively. Imagine n = 5 with three yi clustered around 0, one extreme positive and one extreme negative value. In this situation, μ is likely to be near zero, but what about x? Perhaps x is small and the two extreme values are just that, extreme. Or perhaps x is larger and the fact that three yi are more concentrated was just random (see Figure 5). 
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Figure 5. Two possible x values for a sample of five.

Next, I looked at the maximum likelihood (ML) estimates for μ and x. To find the ML estimates, I found the indices of maximum likelihood value in my likelihood matrix by applying the MATLAB function “max” twice. Here is the code:


[C,I]=max(L);


[D,J]=max(C);


MLmu = x(I(1,J))


MLx = z(J).

L is my likelihood matrix, when max is applied to L it gives a row vector C consisting of the maximum value in each column and a row vector I specifying the row at which the maximum value for each column was found. When max is applied to C, it gives the maximum value D, which does not actually matter, and the index J of D. Thus J specifies the column in which the matrix maximum occurs and I(1,J) specifies the column. I then translate these indices into μ and x values using my previously defined x vector for μ and z vector for x.

I found that the ML estimator for μ does approach μ as n increases. In Figure 6, the f(x) value of the graph is the ML estimate after the first x of the 100 samples have been used to compute the ML estimate. This graphing procedure was performed on four different sample sets as shown in the figure. All four sample sets seemed to be converging to the correct μ = 0, but I wanted to look at the behavior for even larger n.  
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Figure 6. ML estimates of μ as a function of sample size. 
 
To do this, I took a sample of 1000 from the μ = 0, x = 1 Cauchy pdf and evaluated the ML estimate at n = 3, 10, 32, 100, 316 and 1000 to get the blue line in Figure 7. Another, seemingly reasonable way to estimate μ would be by using the sample mean. I used the same sample of 1000 and evaluated the sample mean at the same n values to get the dashed pink line. Clearly the ML estimate is a much better estimator than the mean. The same samples were used to calculate both which indicates that the ML estimate is able to avoid placing too much importance on the extreme values that make the mean so erratic. 
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Figure 7. ML estimate and sample mean as estimators of μ as a function of sample size.
The ML estimate for x also seems to converge to the correct x = 1 as seen below in Figure 8. I used three different sample sets of 1000, plotting the ML estimate of the first n samples at n = 3, 10, 32, 100, 316 and 1000.
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Figure 8. ML estimates for x as a function of sample size.

Next, I went back to the one dimensional likelihood functions to see what shape they took and how they changed with increasing n. The likelihood functions for μ all look very Gaussian, while the likelihood function for x requires higher n before it looks normal (Figure 9). [image: image15.png]ihood
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Figure 9.  Likelihood functions of μ (left) and x (right) with n = 10 (blue), 30 (green) and 100 (pink).
The Gaussian appearance of the likelihood function can be understood if one Taylor expands the natural log of the likelihood function around the maximum likelihood value. The first term in the expansion will be a constant, the second will be zero because we are expanding around the ML value and the third will be quadratic. To return an approximation to the likelihood function, raise e to this Taylor expansion. This procedure will a Gaussian with mean equal to the ML estimate and 
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 evaluated at the ML estimate (for further details, see Sivia pages 22-24). Unfortunately, in this problem even the ML estimate is very hard to find analytically and evaluating σ would be even more difficult. So I cannot analytically demonstrate why the Gaussian is immediately a good approximation to μ while it takes higher n for it to be a good approximation to x, but it must be due to the asymmetry of L(x) requiring further terms in the Taylor expansion. As n gets larger, these higher order terms must decrease more quickly than the third term. 

It is evident from both likelihood functions in Figure 9 that σ is decreasing with increasing n. To investigate how it was decreasing, I graphed the standard deviation of the μ likelihood using the first n samples for four different sample sets of 100 (Figure 10). The quantization of the graph comes from my initial choice of resolution for μ. With a hint from Sivia, page 34, I plotted a graph of 
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 where a was chosen to roughly agree with the data at n =100. The line does seem to be about the same shape as the data, making it believable that 
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Figure 10. Standard deviation of μ as a function of n. The black line gives the expected 1/sqrt(n) dependence. 

I have investigated in detail both the 3D and 2D likelihood functions for the lighthouse problem. Since I normalized my likelihood functions, they are actually Bayesian posteriors assuming a uniform prior. So I could easily write a bit more code to evaluate the probability that μ or x is in some range of values given a certain set of data. I will not continue with this though, because I think all of this enough is enough of a re-visit to the lighthouse problem!
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Appendix: Derivation of Cauchy distribution
Let (x,μ) be the location of the lighthouse, θ be the angle at which a light pulse is emitted 
and y be the distance along shore where the light pulse hits. 
By the geometry of the problem,
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Find the cdf for Y:



[image: image22.wmf]))

(

tan

(

)

(tan

)

tan

(

)

(

1

x

y

P

x

y

P

y

x

P

y

y

P

i

i

i

-

<

=

<

=

<

=

<

q

q

q

.

Note that θ is randomly distributed from –π/2 to π/2, so 
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Thus 
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The derivative of the cdf gives the pdf:
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