Introduction 

Oft, it hath been stated that although meteorologists are wrong most of the time, they still manage to keep their jobs. While this saying meets popular approval, it is not obvious whether or not the claim withstands rigorous empirical testing.  If we define a correct prediction as a prediction that is accurate to the degree, then there is a high likelihood that the weathermen do indeed tend to be wrong.  The question of interest then is not the occurrence of incorrect predictions, but the magnitude of their inaccuracy.  Moreover, does the specific climate for which the predictions are made effect their accuracy?  In this paper, we analyze weather predictions in all 50 state capitols in the United States.  First, we analyze the trend in weather predictions by performing ordinary least squares estimation.  Second, we specifically focus on differences in temperature predictions between the 25 hottest and coldest cities.  Before diving into our analysis, it is first important to discuss our data collection methodology.
Data Collection

In order to estimate the accuracy of weather forecasts, we began by collecting ten-day forecasts. We chose to examine the high and low temperature predictions every day from February 26th through March 5th in the capitals of all fifty states. We collected the data between 10am and 11am daily for consistency (considering forecasts are updated at various points throughout the day).  Most importantly, we wanted to avoid the ‘switch-over’ that occurs in the afternoon when the predictions are changed from daily to overnight lows and from predicted to realized high temperatures.  We also limited ourselves to one source of data, The Weather Channel.com.  We chose this source both for its availability and commercial credibility.  
Since our predictions began on February 26th but always ended on March 5th, we have decreasing number of predictions on each subsequent day.  For example, we recorded data for 8 sets of highs and lows for February 26th, but only 3 sets for March 3rd. To avoid confusion, we have the same-day predictions for each data as a forecast length of  0 and subsequent days as 1, 2, …. Thus, we collected a total of 36 sets of predicted temperatures, actual temperatures, and historical average temperatures for each state capital.   In total, we gathered 10,800 different temperatures. 

One difficulty associated with gathering such a large quantity of data by hand is human error. It is very easy, despite double checking, to incorrectly ascribe a day with the wrong information. For example, one outlier we found for Nebraska involved the mistyping of the predicted high of 61 as 16. However, having a large quantity of data also mitigates the contribution of these outliers to the mean and variance of the overall sample, vastly reducing their influence on our statistical analyses.  

We do caution, however, that due to the sequential nature of our data and the relatively short time interval it was collected over, there is a distinct possibility of bias. For example, the time period in question was not randomly selected.  Therefore, an unexpected exogenous shift in temperature (ie, a sudden jet stream shift), combined with the fact that nearby states have correlated weather patterns, would result in a large portion of our results being effected.    
Analyzing the Trend in Weather Forecasts

If meteorologists are indeed fallible, it stands to question the magnitude of their error and whether or not they have a tendency to overestimate or underestimate in their predictions.  To test this, we run the following linear regression:
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where y = actual temperature, x = predicted temperature, and μ = error.  The results for high and low temperatures are illustrated in Appendices A and B and are tabulated below:
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	Same-Day
	3.74*
	.934*
	 .635*
	.881*

	Next-Day
	2.94*
	.953*
	 .602*
	.881*

	2-Days
	2.53* 
	.952*
	 .504*
	.891*

	3-Days
	3.17*
	.938*
	 1.56*
	.871*

	4-Days
	7.08*
	.851*
	 3.18*
	.817*

	5-Days
	7.72*
	.846*
	 6.31*
	.703*

	6-Days
	9.91*
	.808*
	 7.30*
	.676*

	7-Days
	6.91*
	.861*
	-.230*
	.897*


*
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 significantly different from 1 with 95% confidence (normal, 2-Tailed approximation)
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significantly different from 0 with 95% confidence (normal, 2-Tailed approximation)

Holding meteorologists to such an exacting standard as perfection is probably a little steep.  However, at the very least one would hope that they could out perform the use of historical averages as an alternate estimation method.  We therefore repeat the regression above replacing x with historical average highs and lows.  Graphical representations can be found in Appendices C and D:
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	Same-Day
	-3.78
	1.09
	-1.08
	1.03*

	Next-Day
	-3.07
	1.09
	.462
	1.00*

	2-Days
	-2.78
	1.09
	.695
	1.01*

	3-Days
	-2.72
	1.08
	.788
	1.01*

	4-Days
	-3.59
	1.07
	.098
	1.01*

	5-Days
	-2.15
	1.03
	.960
	.948*

	6-Days
	 2.24
	.966
	3.86
	.868*

	7-Days
	-1.37
	1.00
	4.30
	.889*


*
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 significantly different from 1 with 95% confidence (normal, 2-Tailed approximation)
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significantly different from 0 with 95% confidence (normal, 2-Tailed approximation)
The reason why we compare 
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 to zero is because when the prediction (or historical average) equals the actual temperature that day it is represented in the equation:
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As is apparent in the tables reported above, it seems that meteorologists have a tendency to overestimate their predictions pretty much across the board.
  Conversely, at 95% confidence we cannot reject the null hypothesis that 
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=0 for the regression on historical averages (except for the 6-Day forecast).  Therefore it appears that the historical averages are unbiased and the meteorological predictions are biased.
This assertion, however, is incomplete.  For instance, one may fail to reject the null hypothesis in this case if the estimator is imprecise (meaning high variability from the actual temperature).  This calls into question the “efficiency” of the estimators.  To analyze this, we employ a method based on the root mean squared error term, which we define as: 
n-1Σ(|yi-xi|)  for all  1 ≤ i ≤ n
where y is the actual temperature and x is the predicted temperature. 
Here, we define root MSE as the average distance the predictions/average temperatures lie from the actual temperatures.  This is slightly different from the formal measure of root MSE, which represents this distance from the prediction/average temperature to the fitted line:
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The following chart shows the root MSE as we define it for the meteorological prediction and the historical average estimators:
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The above charts indicate that the meteorological predictions tend to be closer to the actual temperatures than the historical averages.  This efficiency advantage dissipates as the forecast length increases.

Given the odd behavior of the meteorological predictions of lows (biased and inefficient), we conclude that there was a data collection error.  Our best guess is that the actual and historical average temperature data for lows reflects overnight lows.  In contrast, our predictions data is based on morning lows.  We base this guess on the fact that overnight lows, tend to be colder than morning lows (hence the strong bias in the meteorological prediction estimator and lack of apparent bias in the historical average estimator).  From this point on, we consider only the highs temperature data.
Estimator Efficiency across Hot and Cold Cities


Another question that may be of interest is whether or not it is more difficult to predict weather in different climates.  In order to analyze this we compare the variances of the residuals from our regressions between the 25 cold cities and the 25 hot cities.  We make this temperature determination based on the mean of the actual temperatures recorded during the time period in question.  We conducted and F-Test on the variance of these residuals and report the results below
:  
	Forecast Length
	Predictions
	Historical Averages

	
	Cold
	Hot
	Cold
	Hot

	0
	4.19
	7.37*
	9.02
	11.8*

	1
	5.06
	8.07*
	8.72
	11.5*

	2
	5.84
	7.79*
	8.04
	11.4*

	3
	6.58
	7.94*
	7.60
	10.8*

	4
	7.35
	8.11*
	6.81
	9.80*

	5
	6.17
	8.38*
	6.65
	9.08*

	6
	5.80
	7.93*
	5.53
	8.78*

	7
	7.07
	8.03*
	4.64
	9.06*


* indicates standard deviation is significantly greater at 95% confidence
The above table shows that the hot states have more volatile weather, producing a large variance in the residuals.  
Conclusions


Our analysis has shown that meteorological predictions do a good job at predicting temperatures over short time spans (efficient but biased), but as the forecast approaches 6 to 7 days out the historical average is a better estimator (same efficiency, but unbiased).  However, making an exact determination of which estimator is better depends on how one weighs the tradeoff of bias and efficiency.  For instance, meteorologists may take the view that it is better to be prepared for extreme temperatures “just in case.”  Therefore, in warm climates, they may predict the temperature to be a few degrees warmer to ensure one carries a fan; they may predict colder temperatures in cold climates to ensure people bring a coat and avoid the displeasure of being chilled. 
The idea is that the larger the variance in the residuals, the more imprecise and inaccurate the prediction.  To conduct an F-Test, we calculate the ratio of the variances and compare them to an F-Distribution.





Graph

While calculating the ADFAT gives us a general idea for how predictions vary with time, another important tool is to examine the regression line of predicted vs. actual temperatures. To do this, we first separate our values by their respective predict distance. Next, we run a regression of actual on predict and estimate the coefficients. 
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Where Y is the Actual temperature and X is the predicted. In order to derive our B1 we have: 
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For BO we calculate
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The mus are our error terms, and these stand for random variation that our model does not control for. Given the regression line we can then examine whether we tend to over predict or under predict the actual temperatures. In laymen’s terms, calculating the above B1 and B0 creates a line that minimizes the sum of squared errors.  

Mark Needs to write section on how regressing the u’s worked. I’m still a little confused.

Running these regressions gives us estimates for Beta1 coefficients, but they don’t tell us whether they are stastically significant. To do this, we ran T tests on the mu’s. 
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F Test
We used the F Test to compare the variances of error terms across cold and hot states.  We split our data into two groups, where the first group contained the warmest 25 states and the second group 25 cold states in order to test whether there is a difference in the accuracy of prediction based on the climate.  

T Test

To measure how good the predictions are we take a look at the error terms for our data.  We used the T test to see if the error terms for the warm and cold states are different.  

confidence intervals. 

Results

For all of our graphs, the B1 value was less than one, which indicates that weatherman tend to under predict high temperatures and over predict low ones. Moro

Conclusions


Weather forecasters may consistently predict the incorrect values for temperature, but this does not mean that their predictions are useless. Contrarily, we have found that over short periods of time, their predictions of actual temperatures are significantly better than our best estimator, the historical mean. Perhaps this is why people still listen to what the weatherman say in the morning. Regardless, these estimates have an average distance of about 6 degrees even for day of predictions. So people should take this into consideration when examining longer distances. By four days out, the mean distance between the predicted and actual temperature was more than eight degrees. Considering our data, we would do just as good to look at the historical average temperature for ten days out as to looking at the forecast. However, the results are certainly not conclusive (see ‘Data Collection’). 
From anecdotal evidence, we have noted that at longer time frames the weather channel may predict trends, but not on what day the trends occur. For example, major changes in weather patterns such as shifts in the Jet Stream are difficult to pin down to a single day. However, these changes are frequently accompanied by large scale shifts in temperature patterns. By over or under predicting the day on which this change occurs, the average distance from the actual temperature may remain similar to the historical average. However, there may still be some value to these predictions in looking for trends rather than specific daily forecasts. We again caution that this has not been analyzed rigorously in our analysis. Rather, this simply comes from years of experience following the weather channel and accompanied weather trends. 
� The constant term in the equation shifts the regression line to the point where it illustrates the temperatures tend to be predicted colder than actuals in cold climates, more or less accurate in moderate climates, and hotter in hot climates.  See the Appendices A and B for a graphical representation.


� We conduct the F-Test by taking the standard deviation (as opposed to the variance) and comparing the value to the ratio of the 2 standard deviations (hot and cold) and compare the values to an F-Distribution for standard deviations.
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