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Resilience and Regime Change in Ecosystems: Bifurcation and Perturbation Analysis

Background
! “Resilience Thinking” is a new paradigm of Sustainability and Environmental 
Science. It refers to a unified way of conceptualizing and managing social-ecological 
systems. The goal of managing for resilience is to maintain the ability of a system to 
absorb stochastic and human-generated perturbations and return to the current state. If 
the system is improperly managed and resilience decreases, the likelihood of a regime 
change, where the system crosses a threshold to an alternate stable state, is increased. 
We know that certain aspects of a system, including diversity, redundancy, hierarchy 
and self-organization, tend to increase resilience independently of the actual structure of 
the system.
! Resilience Thinking, as a paradigm, has a lot to offer without further 
mathematical development, but whether further mathematical exploration has much to 
offer ecology is an open question. Many ecologists believe that mathematical models are 
much too simplified to be applied to real ecosystems. Additionally, the amount of 
unpredictable, stochastic forcing in real ecosystems is an obstacle for any deterministic 
theory of ecology (Schaffer 1985).
! In this paper I will present a small set of practical mathematical tools that can be 
applied to resilience management, including detecting regime thresholds, analyzing 
system reactivity to understand local perturbation responses, and better understanding 
chaotic regimes and bifurcations.
! Evolution favors stable, resilient systems not liable to catastrophic regime 
changes or chaotic behavior (Berryman and Millstein 1989). Even if a system exhibits 
transient chaos it tends to return to a stable state (Upadhyay 2009). Instead, these 
behaviors often result from human intervention, and that is where these tools will be 
most useful. This is not a great limitation because the basic assumption of resilience 
thinking is that systems are most resilient in their natural (evolved states), so we would 
like to understand how human intervention affects natural systems.

Models
! The basic model of continuous-generation species growth is the differential 
equation system (1) due to Lotka and Volterra independently in 1925 and 1926. It is a 
predator-prey model where the growth of species x is limited by predation by species y, 
and the growth of species y is limited by availability of prey x. This model has 
limitations, and represents a simplistic Holling-Type I Functional Response, which does 
not model saturation of prey (i.e. prey consumption remains proportional to prey 



density until the maximum is reached). The model that I will focus on is a prey, 
predator and top-predator model with a Holling-Type II functional response (equation 
2), where prey consumption slows with respect to prey density near the maximum.

! The dynamics of the predator-prey Lotka-Volterra Model are simple and the 
stabilities of the fixed points can be easily determined from the parameters. As you 
increase the number of species in this model, the possible behaviors become more 
complex including periodic orbits and limit-cycles in three dimensions and chaos in 
four (May and Warren 1975).
! The Holling-Type II model is more 
realistic in its behavior and the 
nonlinearities produce chaos in only three 
species, which is easier to visualize. The 
three-species chain is also considered a 
food-web “unit”, because food webs can be 
composed of smaller chains, so 
understanding the dynamics of the chain 
will hopefully help us understand larger 
systems.

Detecting Thresholds
! Approaching a threshold between 
alternate stable states in a system leads to a 
phenomenon called “critical slowing 
down,” where system indicators change 
more and more slowly. This can be detected by the 
presence of lower frequencies in the data. 
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Figure 1: Structure of the local potential 
function near a threshold. (Guttal and 
Jayaprakesh 2008)



Additionally, the local potential function becomes more asymmetrical near a threshold, 
because a threshold is a leveling-off of the potential (figure 1). This can be detected in 
the data as well, because a small perturbation is more likely to skew the data farther in 
one direction because the potential is flatter, which leads to increased variance and 
skewness (Andersen et al. 2008).

Reactivity and Perturbations
! When a system is near a threshold, it is 
valuable to have some understanding how it 
will react to perturbations, either internal or 
external (stochastic). Reactivity can refer to a 
variety of ways of measuring the short-term 
reaction of the system, including the maximum 
rate of change immediately after a 
perturbation, the maximum deviation from the 
stable state before returning, or the perturbation 
envelope, the curve consisting of the maximum 
deviation at each time step after the 
perturbation (figure 2) (Neubert and Caswell 1996).
! Two matrices with the same stability (and 
eigenvalues) can react differently in the short term (although they will act the same in 
the long term). This short-term reactivity can be analyzed by calculating the eigenvalues 
of the symmetric (Hermitian) part of the matrix. To compute these values, we can 
linearize the ecosystem model at a typical point or construct a complete linear model. 
The compartment model, a matrix whose entries represent resource flow between 
ecosystem “compartments, ” is an example of a linear model that can be generalized to 
most ecosystems.
! Neubert and Caswell (1996) calculated the reactivity of a lake ecosystem 
compartment model published by Carpenter et al. in 1992. They found that the 
reactivity was significantly decreased by the addition of a top-predator (a large fish) to 
the ecosystem (the top-predator was added between 1984 and 1986). This confirms the 
intuition that a top-predator will tend to damp large fluctuations. There data also 
confirmed that a longer food chain takes longer to return to the stable state, because 
perturbations propagate further (figure 2).

Bifurcation Behavior
! A bifurcation diagram of the Holling-Type II equations for different values of 
parameter b1 (figure 3) shows that chaotic regimes exist for many values greater than 
2.4. For some values of b1 (e.g. 2.47), there are simultaneously stable periodic orbits and 
chaotic orbits, depending on initial conditions. A perturbation test on a stable initial 

Figure 2: Perturbation envelopes for a 
lake ecosystem in 1984 and 1986.



condition for b1 = 2.47 shows little correlation 
between the amount of the perturbation and the 
behavior of the orbit. In other words, the 
attracting regime is unpredictable at these 
parameter values and resilience management is 
more sensitive and thus more imperative. 
Chaotic regimes are undesirable from a 
management perspective and also because chaos, 
which induces large swings in population, 
increases the chances of a deterministic species 
extinction (i.e. one not caused by stochastic 
fluctuations) (Berryman and Millstein 1989).
! Catastrophic (sudden and discontinuous) 
regime changes are not unusual in nature and 
can be devastating, even if the switch is between 
two stable states. Examples include 
desertification, algae-dominated coral reefs, lake 
eutrophication and many others that may be 
induced by climate change. These are all 
situations where the balancing feedback 
mechanism of the system is overwhelmed, often 
by human inputs, and reinforcing feedback takes 
over suddenly.
! A catastrophic switch that cannot be 
reversed by simply returning inputs to prior levels is 
called hysteresis. Hysteresis occurs when there is a fold in the state space of the system, 
so that there are two possible states for one set of conditions. In this case, changing the 
conditions and external forcing can both cause the system to jump from one stable state 
to the other (figure 1). Figure 4 shows this situation in a lake-eutrophication model.
! Bifurcations in flows are defined on Poincaré Maps, which means that a stable 
point can represent a stable periodic orbit depending on the cross-section. If a system 
adds one or more dimensions of periodicity, that is reflected in an appropriate Poincaré 
Map as a switch from a stable point to a periodic orbit. This switch is called a Hopf 
bifurcation. A Hopf bifurcation is when a path of stable equilibria is replaced by a 
periodic orbit or limit cycle (on a Poincaré Map). This is a common behavior in 
ecosystems, which are naturally periodic. Higher amplitudes of fluctuation make the 
system less stable; conversely, a cessation of periodicity can signify an extinction.
! Muratori and Rinaldi (1989) analyzed the Hopf bifurcation behavior of the three-
species system in equation 2. They analyzed the system using graphical methods and 
Jacobian calculation using constant levels of the top-predator. This generated a 

Figure 3: A bifurcation diagram of the Holling-Type 
II equations (2) for different values of parameter b1 
plotted agains the maxima of species z.

Figure 4: Hysteresis in lake eutrophication.



bifurcation diagram with the level of the top-predator as the 
key parameter. This is useful because top-predators are more 
measurable and more measurably affected by human action. 
For example, in Schaffer (1985) and Gamarra and Solé 
(2000), bifurcation analysis suggests that lynx-trapping 
by humans caused chaotic amplitudes observed in the 
Canadian lynx cycle of the 19th-century. In this case, the 
Poincaré Map switched from a single stable point to a 
chaotic periodic attractor (figure 5).
! Rinaldi and Muratori used isoclines (x’,y’ = 0) to 
determine the behavior of the system at different levels of 
the top-predator. Changing this constant shifts only the y’ 
isocline in a predictable way. Different isocline shapes 
and intersections produce different bifurcation types. 
Figure 6 shows the possible intersections. If the isoclines 

behave as on the left, then the bifurcation behavior is smooth. The stable co-existence 
equilibrium bifurcates smoothly from the x-only equilibrium, and then bifurcates into 
periodic cycles of x and y (at zH, where the equilibrium goes unstable). Because these 
are smooth transitions, they can be reversed simply by returning the z-population to 
prior levels. The situation on the right leads to catastrophic regime switches (hysteresis). 
It either introduces a catastrophic bifurcation of stable states (called a saddle-node 
bifurcation) or a catastrophic Hopf bifurcation, where the system jumps from stable 
periodic orbits to extinction of y (and therefore z) (figure 7). Which situation occurs 
depends on the stability of the intersection labeled (1) in figure 6, which controls where 
the Hopf bifurcation (zH) occurs.

Figure 5: Switch from stable equilibrium 
to a chaotic periodic attractor in the 19th-
century Canadian lynx cycle.

Figure 6: Isoclines of the prey, predator, top-predator model.



Conclusion
! The promise of resilience thinking is an actionable set of rules and management 
practices based on a broad understanding of ecosystems. It does not require the precise 
understanding that were needed for previous paradigms of ecosystem control, a notion 
that has been all but abandoned after many catastrophic failures. The mathematics of 
chaos promised in its earlier years (e.g. Schaffer 1985) to contribute to a precise, 
deterministic model, but that idea has since faded. Instead, contributions have 
paralleled the shift to resilience thinking, offering a broader understanding of possible 
system behaviors and the effects of human intervention. Recent papers by Liu and Chen 
(2002) and Zhang and Chen (2004) study the effect of impulsive perturbations on the 
system I explored and find that increasing the amplitude of these perturbations 
predictably increasing the amplitude of the resulting chaotic fluctuations. I believe that, 
while chaos may not offer the precise understanding once sought, it does have a lot to 
offer ecologists and policy-makers in a time of increasing pressure on ecosystems.

Figure 7: Allowed bifurcations of figure 6.
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