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Abstract: 
 

Mathematical epidemiological models for the spread of disease through a 
population are used to predict the prevalence of a disease or to study the impacts of 
treatment or prevention measures. Initial conditions for these models are measured from 
statistical data collected from a population – since these initial conditions can never be 
exact, the presence of chaos in mathematical models has serious implications for the 
accuracy of the models as well as how epidemiologists interpret their findings. This paper 
confirms the chaotic behavior of a model for dengue fever by investigating sensitive 
dependence, chaotic attractors, and Lyapunov exponents under a variety of initial 
conditions.  

  
Mathematical Epidemiological Models: 

 
Mathematical models for the spread of disease through a population have a 

variety of uses. A good mathematical model can be used to predict the prevalence of a 
disease within a population. Different parameters in the model reflect the average 
lifespan of a population, the survival rate for a disease, the infectiousness of a disease, the 
rate of loss of immunity over time, the rate of recovery from the disease, or a number of 
other factors that vary by disease. Varying these constants allows epidemiologists to 
approximate the effects of prevention measures such as vaccinations or treatment 
measures. Models also allow epidemiologists to predict whether a disease or virus will 
die out over time under certain conditions. From the models, mathematicians can 
calculate reproduction numbers and other measures of how much the disease will spread 
at a given time, or threshold values necessary for certain conditions such as eradication to 
be achieved (Hethcote). Finding which conditions will achieve eradication lets 
epidemiologists know where it will be most effective to concentrate their efforts. More 
advance models differentiate between age groups or seasonal variations in disease 
prevalence caused by climate changes or school terms. 

The standard epidemiological model for disease prevalence is the MSEIR model, 
a set of differential equations that categorizes percentages of the population, as shown in 
the figure below (Hethcote). The M portion of the population represents those infants 
who have temporary maternal passive immunity from the disease. Over time, those in M 
will move in to the S group, those susceptible to the disease. If a susceptible individual 
has contact with an infectious individual and the contact is sufficient to contract the 
disease, then the susceptible one will move into E, the exposed group. Those in E will 
spend a certain amount of time specific to the disease before the start to show symptoms 
and become infectious, at which point they will move into the I group. If they survive the 
disease, they recover and move into the R group, and will remain immune to the disease 
for an amount of time specific to each disease.  

In the MSEIR model, it is assumed for the sake of mathematical simplicity that 
the birth rate is the same as the death rate; the total population stays constant and there is 
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constant input into the M and S categories. More complicated mathematical models 
include populations that vary over time.  

MSEIR represents a general case that can be adapted to better reflect many 
specific diseases. For some cases, the time between exposure and display of symptoms or 
the ability of mothers to transfer antibodies to their fetuses may be negligible, in which 
case the E or M group would be omitted from the model. Different parameters in each 
model will further reflect the specific properties of a single disease.  

 
Limitations: 

 
While these models are powerful tools for predicting the behavior of diseases 

within a population, it is important to remember that they are drastic simplifications of 
reality. Disease dynamics in real life are not deterministic – human behavior can affect 
outcomes for any set of initial conditions. These models are merely approximations of 
what should happen for sufficiently large populations. They assume constant total 
population (although they account for births and deaths at an equal rate) and they assume 
that the population will mix homogeneously (that each individual will come into contact 
with the same constant number of other individuals). 

It is also impossible to obtain perfect information about the constants that fit into 
the model to characterize the disease. Statistical information about real diseases is 
gathered, but one must always account for unreported cases of the disease or instances of 
the disease that have been affected by other variables. More complicated models require 
more and more parameters to fully model the spread of a disease; when choosing how to 
study a disease, a mathematician or epidemiologist must balance the accuracy of the 
mathematical model against the feasibility of obtaining all the necessary parameters to 
fully characterize the a disease.  

Chaos and sensitive dependence further complicate this dynamic. Epidemiologists 
can only approximate initial conditions, and the possibility that two very similar sets of 
initial conditions could have results that diverge at an exponential rate has serious 
ramifications for the accuracy of their models. The production of vaccines takes a 
significant amount of time, and which diseases or strains of a virus the mathematical 
models predict will be most prevalent in the future and will be most affected by mass 
vaccinations govern their production.  
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Chaos in Dengue Fever: 
 
I investigated chaos in an adaptation 

of the SIRS model (shown to the right, and 
taken from a study by Aguiar, Kooi, and 
Stollenwerk) for two coexisting strains of 
dengue fever. Dengue is essentially a 
human disease, but is passed through a 
population by transfer of blood, most often 
by mosquitoes. In many epidemiological 
models for dengue fever, it is assumed that 
mosquitoes are mixing homogeneously 
with the human population (Derouich et al). 
Note also that in this case, the creators of 
the model deemed the time and number of 
infants with maternal passive immunity and 
the length of time between exposure and 
display of symptoms to be negligible; 
hence the M and E groups have been 
omitted. In this model, those infected with 
one strain or another of dengue will 
temporarily have cross immunity to the 
other strain. Those with the first strain 
cannot get the second until a certain period 
of time after recovering from the first, and 
vice versa. Chaos has been found in this 
model, as seen in some regions of the 
bifurcation diagram to the right, obtained 
by varying the parameter φ(Aguiar). 

Mathematical analysis was done 
using Matlab. Total population was set at 
100 so that results would reflect 
percentages of the population rather than 
absolute numbers. The other parameters 
that approximate those for dengue fever are as follows: µ = 1/65, γ= 52, β= 2 γ, α=2, 
and the parameter φ, a measure of infectiousness that can reflect what proportion of the 
population is vaccinated, will be varied. 

I first kept φ constant at 0.9 to search for sensitive dependence. After finding an 
orbit that appeared to be chaotic, I mapped two trajectories with very similar initial 
conditions (uo = [35.8207; 0.0001; 0.0074; 0.0196; 0.0768; 19.0634; 14.3108; 0.0040; 
0.0000; 30.6972] and uo2 = uo + 1e-4 * [1; zeros(8,1); -1]). The initial distance between 
the two sets of starting values was 1.4142e-04. These trajectories diverged at an 
exponential rate, as is apparent in the figure below.  
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To calculate the rate of divergence, I mapped time against the log of the distance 
between the two trajectories (results below). There is a clear upward slope followed by a 
plateau at which the trajectories cannot diverge any more. I measured the slope of the 
region before the plateau from time 10 until the first time that the distance between the 
two trajectories was greater than 1. This slope gave me an approximation for the leading 
Lyapunov exponent.   
 

 To make my approximation more accurate, I repeated the calculations for 15 
different sets of initial values and averaged the results. This yielded a weakly positive 
average leading Lyapunov exponent of h = 0.0247 when φ= 0.9.   

To further investigate the effects of the φparameter, I repeated this estimate of 
the leading Lyapunov exponent for values of φbetween 0 and 3. Each reported leading 
Lyapunov exponent is the average of the calculated Lyapunov exponent for 15 different 
initial conditions. My results are shown below on the right. On the left for comparison are 
four Lyapunov exponents for the same model in the smaller range 0 < φ< 1, calculated 
by Aguiar, Kooi, and Stollenwerk with very different methods. My calculations seem to 
confirm the small peak of 0.4 < h < 0.6 for φclose to 0.8, but does not capture the sharp 
drop-off of h as φdecreases below 0.5 or the downward spikes in the 0.5 < φ< 1 range, 
most likely because I only calculated h in 0.1 intervals of φ. My calculations also seem 
to confirm the chaos found by Aguiar et al. in the range 2 < φ< 3, but my model also 
finds some chaos in the 1.5 < φ< 2 range, which may be erroneous.  
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My results, shown to the right above, give an approximation for the Lyapunov 
exponent for a given  φ, but suffer from some limitations. First, I was only able to 
average 15 different initial conditions for each φ, and I calculated the Lyapunov 
exponent only for φvalues that are multiples of 0.1; thus, the model has limited 
predictive capability for intermediate values of φbetween those calculated. Furthermore, 
there is no guarantee that the chosen orbits will remain chaotic when φis changed. The 
Lyapunov exponents remain weakly positive for the majority of φvalues, but the 
calculated Lyapunov exponent could be influenced positively or negatively by my 
methods for calculations of slope. It should be used only to draw general conclusions 
about the positive Lyapunov exponents of the model.  

Having identified chaos in the 
model, I wanted to characterize it further. 
Below is the chaotic attractor for the first 
initial conditions used in the calculations 
for Lyapunov exponent. It is shown on a 
graph of total percent of susceptible 
individuals in the population versus total 
percentage of infectious individuals in the 
population. Percent recovered in the 
population is omitted because it can be 
determined by subtracting infectious and 
susceptible populations from the total 
population. Graphed in three dimensions, 
the strange attractor lies on a plane for 

which the total population adds up to 100%; therefore, graphing the chaotic attractor in 
two dimensions still retains all information.  

 
Conclusions: 

 
My findings confirmed and expanded upon the results found by other researchers 

of this model with other methods. My findings cannot conclusively confirm chaos in the 
dynamics of actual dengue fever, ruled by a system involving complex and changing 
interactions and behaviors that are not necessarily determined by initial conditions.  
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Rather it confirms the presence of chaos for many values of φin this particular model for 
the disease, calling into question the predictive capabilities of the model and raising the 
possibility of sensitive dependence in the actual disease dynamics to the extent that the 
disease reflects the model. A better understanding of the chaos in this and other models 
for epidemics can allow epidemiologists to calculate threshold values for asymptotic 
stability to approach eradication of a disease, and to better understand the limitations the 
models have and the effects their treatment programs might have.  
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Appendix: Matlab Code 
 
First code is for plotting divergent trajectories, plotting chaotic attractor in 3d and 2d, and 
plotting graph for calculations of Lyapunov exponents: 
 
%Searching for Chaos in the MSEIR model for infectious diseases 
%Jonathan Wills, Fall 2009 
  
%Dengue fever is a multi-strain system that can be modeled by a 
permutation 
%of the SIR model: here are the differential eqns. 
  
%Constants: 
N = 100;          %puts values in percentages of total population 
M = (1/65);       %years^(-1)    %average life span/death rate 
Y = 52;           %years^(-1)     rate of recovery from infection, In-
>Rn, where n=1 or n=2 
B = 2*Y;                         %infection rate from either of groups 
I1 or I2 
A = 2;            %years^(-1)    %rate of loss of cross immunity from 
R1->S1 
  
%the constant Q will be varied. 
            %the rate of infection of S1 by I12 is Q*B 
  
if 0 
%Differential Equations: 
S = @(t) -B/N*S*(I1+Q*I21)-B/N*S*(I2+Q*I12)+M*(N-S);  %susceptible 
I1 = @(t) B/N*S*(I1+Q*I21)-(Y+M)*I1;        %infected with strain 1 but 
not strain 2 
I2 = @(t) B/N*S*(I2+Q*I12)-(Y+M)*I2; 
R1 = @(t) Y*I1-(A+M)*R1;                    %recovered from strain 1, 
temporarily cross immune 
R2 = @(t) Y*I2-(A+M)*R2; 
S1 = @(t) -B/N*S1*(I2+Q*I12)+A*R1-M*S1;     %immune to strain 1 but 
susceptible to strain 2 
S2 = @(t) -B/N*S2*(I1+Q*I21)+A*R2-M*S2;     %and vice versa 
I12 = @(t) B/N*S1*(I2+Q*I12)-(Y+M)*I12;     %rezinfected from S1 with 
strain 2 
I21 = @(t) B/N*S2*(I1+Q*I21)-(Y+M)*I21; 
R = @(t) Y*(I12+I21)-M*R;                   %recovered from both 
strains 
  
%now comes the differential equations part 
%eps = 0.1; 
%F = @(t,u) [S; I1; I2; R1; R2; S1; S2; I12; I21; R]; 
end 
%commented out the above functions because it was simpler to write them 
all 
%out as one function F below. 
     
     
     
Q = 0.9;  %varied parameter 
  
eps = 0.1; 
F = @(t,u) [-B/N*u(1)*(u(2)+Q*u(9))-B/N*u(1)*(u(3)+Q*u(8))+M*(N-u(1)); 
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B/N*u(1)*(u(2)+Q*u(9))-(Y+M)*u(2); B/N*u(1)*(u(3)+Q*u(8))-(Y+M)*u(3); 
Y*u(2)-(A+M)*u(4); Y*u(3)-(A+M)*u(5); -B/N*u(6)*(u(3)+Q*u(8))+A*u(4)-
M*u(6); -B/N*u(7)*(u(2)+Q*u(9))+A*u(5)-M*u(7); B/N*u(6)*(u(3)+Q*u(8))-
(Y+M)*u(8); B/N*u(7)*(u(2)+Q*u(9))-(Y+M)*u(9); Y*(u(8)+u(9))-M*u(10)]; 
uo = [35.6932; 0.0005; 0.0068; 0.0622; 0.0731; 19.0647; 14.3795; 
0.0036; 0.0002; 30.7162]; 
%uo = [27;16;14;12;10;8;6;4;2;1]; 
%uo = [27;16;14;22;0;12;6;0;2;1]; 
%uo = [18.3878;0;0.0119;0.0048;0.0538;13.5421;9.0077;0.0088;0;58.9831]; 
%uo = [97;1;1;0;0;0;0;0;0;1]; 
s1 = ode45(F,[0 500],uo,odeset('abstol',1e-9,'nonnegative',1:10)); 
ts1 = 1:0.01:500; 
us1 = deval(s1,ts1)'; 
  
  
eps = 0.1; 
F = @(t,u) [-B/N*u(1)*(u(2)+Q*u(9))-B/N*u(1)*(u(3)+Q*u(8))+M*(N-u(1)); 
B/N*u(1)*(u(2)+Q*u(9))-(Y+M)*u(2); B/N*u(1)*(u(3)+Q*u(8))-(Y+M)*u(3); 
Y*u(2)-(A+M)*u(4); Y*u(3)-(A+M)*u(5); -B/N*u(6)*(u(3)+Q*u(8))+A*u(4)-
M*u(6); -B/N*u(7)*(u(2)+Q*u(9))+A*u(5)-M*u(7); B/N*u(6)*(u(3)+Q*u(8))-
(Y+M)*u(8); B/N*u(7)*(u(2)+Q*u(9))-(Y+M)*u(9); Y*(u(8)+u(9))-M*u(10)]; 
uo2 = uo + 1e-4 * [1; zeros(8,1); -1]; 
%uo2 = 
[18.3877;0;0.0119;0.0048;0.0538;13.5421;9.0077;0.0088;0;58.9834]; 
s2 = ode45(F,[0 500],uo2,odeset('abstol',1e-9,'nonnegative',1:10)); 
ts2 = 1:0.01:500; 
us2 = deval(s2,ts2)'; 
  
  
a=1:numel(ts1); 
b=1:numel(ts2); 
figure; 
plot3 (us1(a,1)+us1(a,6)+us1(a,7), us1(a,2)+us1(a,3)+us1(a,8)+us1(a,9), 
us1(a,4)+us1(a,5)+us1(a,10)); 
hold on; 
plot3 (us2(b,1)+us2(b,6)+us2(b,7), us2(b,2)+us2(b,3)+us2(b,8)+us2(b,9), 
us2(b,4)+us2(b,5)+us2(b,10), 'r'); 
axis vis3d 
a =1:1:numel(ts1); 
b =1:1:numel(ts2); 
plot3 (us1(a,1)+us1(a,6)+us1(a,7), us1(a,2)+us1(a,3)+us1(a,8)+us1(a,9), 
us1(a,4)+us1(a,5)+us1(a,10)); 
plot3 (us2(b,1)+us2(b,6)+us2(b,7), us2(b,2)+us2(b,3)+us2(b,8)+us2(b,9), 
us2(b,4)+us2(b,5)+us2(b,10), 'r'); 
xlabel('susceptible'); 
ylabel('infectious'); 
zlabel('recovered'); 
hold off; 
  
figure; 
hold on; 
plot (us1(a,1)+us1(a,6)+us1(a,7), us1(a,2)+us1(a,3)+us1(a,8)+us1(a,9)); 
xlabel('susceptible'); 
ylabel('infectious'); 
hold off; 
  
figure; 
plot(ts1,us1);title('1e-9 acc +ve'); axis([0 130 -1e3 1e3]) 
hold on; 
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plot(ts2,us2); 
  
figure; 
plot(ts1, log(sqrt(sum((us1-us2).^2,2)))); 
  
 
Second code is an adaptation of the first one, for plotting a graph of Lyapunov exponent 
against the parameter φ: 
 
%Searching for Chaos in the MSEIR model for infectious diseases 
%Jonathan Wills, Fall 2009 
  
%Dengue fever is a multi-strain system that can be modeled by a 
permutation 
%of the SIR model: here are the differential eqns. 
 
%Constants: 
N = 100;          %puts values in percentages of total population 
M = (1/65);       %years^(-1)    %average life span/death rate 
Y = 52;           %years^(-1)     rate of recovery from infection, In-
>Rn, where n=1 or n=2 
B = 2*Y;                         %infection rate from either of groups 
I1 or I2 
A = 2;            %years^(-1)    %rate of loss of cross immunity from 
R1->S1 
Q = 0.9; 
  
steps = 15;      %increase to get more lyapunov exponents to average 
for a single Q 
lyap = zeros(10,50); %different starting values for each calculation of 
the lyapunov exponent for a single Q 
lyap(:,1)=uo; 
h = zeros(1,steps); %list of lyapunov exponenets for a single Q to 
average 
h2 = zeros(1,10); %list of average lyapunov exponents to plot 
  
figure; 
hold on; 
  
for Q2 = 1:30;    %vary this to get more accurate graphs of Q vs. 
lyapunov exponenet 
    Q = Q2/10; 
  
  
eps = 0.1; 
F = @(t,u) [-B/N*u(1)*(u(2)+Q*u(9))-B/N*u(1)*(u(3)+Q*u(8))+M*(N-u(1)); 
B/N*u(1)*(u(2)+Q*u(9))-(Y+M)*u(2); B/N*u(1)*(u(3)+Q*u(8))-(Y+M)*u(3); 
Y*u(2)-(A+M)*u(4); Y*u(3)-(A+M)*u(5); -B/N*u(6)*(u(3)+Q*u(8))+A*u(4)-
M*u(6); -B/N*u(7)*(u(2)+Q*u(9))+A*u(5)-M*u(7); B/N*u(6)*(u(3)+Q*u(8))-
(Y+M)*u(8); B/N*u(7)*(u(2)+Q*u(9))-(Y+M)*u(9); Y*(u(8)+u(9))-M*u(10)]; 
% below are a variety of initial conditions i used throughout the 
% investigations 
%uo = [27;16;14;12;10;8;6;4;2;1]; 
%uo = [35.6932; 0.0005; 0.0068; 0.0622; 0.0731; 19.0647; 14.3795; 
0.0036; 0.0002; 30.7162]; 
uo = [35.8207; 0.0001; 0.0074; 0.0196; 0.0768; 19.0634; 14.3108; 
0.0040; 0.0000; 30.6972]; 
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for z=1:steps; 
    uo = lyap(:,z); 
uo2 = uo + 1e-4 * [1; zeros(8,1); -1]; 
%uo2 = 
[18.3877;0;0.0119;0.0048;0.0538;13.5421;9.0077;0.0088;0;58.9834]; 
%[ts,us] = ode45(F,[0 500],uo); 
  
T = 500; 
s1 = ode45(F,[0 T],uo,odeset('abstol',1e-9,'nonnegative',1:10)); 
ts = 1:0.5:T; 
us1 = deval(s1,ts)'; 
  
s2 = ode45(F,[0 T],uo2,odeset('abstol',1e-9,'nonnegative',1:10)); 
us2 = deval(s2,ts)'; 
disp(Q2);   %indicator of progress 
  
if 0 
%plot for each calculation of lyap exp 
figure; 
plot(ts, log(abs(us1(:,1)-us2(:,1)))); xlabel('time'); 
ylabel('log(distance between two trajectories)'); 
  
end 
  
dist = sqrt(sum((us1-us2).^2,2)); 
ff = find(dist>1); 
fg = numel(ff); 
if fg > 0 
gg = ff(1); 
end 
if fg <1 
    gg = 250; %an approximation for slope when lyapunov exponent is 
less than zero (any stopping point should work because there will be no 
plateau) 
end 
lyap(:,z+1) = us1(gg,:); 
  
h(z)=(1/(gg-10)*((log(dist(gg)))-log(dist(10))));  
  
end 
  
  
avgh = sum(h)/numel(h); %averages h for a single Q 
  
h2(Q2) = avgh; %records the average h for this value of Q, makes a list 
  
end 
  
plot(0.1:0.1:3, h2);  %plots Q vs. h 
  
  
  
 
 


