Math 53: Chaos!: Midterm 2, FALL 2011

2 hours, 60 points total, 6 questions worth various points (proportional to blank space)	
 [9 points] Complex dynamics. Please show working or some explanation. (a) Is i in the Julia set J(1)? 	
(b) Is 1 in the Mandelbrot set, and why?	
(c) Consider the map $f(z):=z^2+1,$ for $z\in\mathbb{C}.$ Could there exist a periodic sink for this map?	
(d) Could there exist a $z_0 \in \mathbb{C}$ such that $f^n(z_0)$ remains bounded as $n \to \infty$?	
(e) Based on your answers above, do you expect $J(1)$ to be connected/disconnected? Have nonzero/z measure? (circle those that apply; no explanation needed)	er

BONUS: Either find an example of a bounded such z_0 from part (d), or prove there cannot exist any.

Consider 1D motion of a point particle in the 2. [16 points] potential $P(x) = x^3/3 - x$, which has roughly the following graph:

(a) Write a system of first-order ODEs for the dynamics in this potential, with no damping.

(b) Sketch the phase plane (x, \dot{x}) showing several orbits including all the types of motion that can occur:

(c)	Find all equilibria and categorize their stability. argument in each case. [Hint: use the phase plane]		your	stabilities	by g	iving a	rigorous
(d)	In what set of energies do periodic orbits lie? [take	e care wi	th end	dpoints]			
(e)	Sketch the set of all phase plane points which has $t \to \infty$.	ive the	unstal	ble equilibr	ium a	as their	limit as

(f) Imagine a small amount of damping is now added. Sketch on a phase plane the basin of the stable equilibrium.

3. [10 points] Consider the continuous function f with the following graph:

- (a) Draw the transition graph (use three intervals A, B, and C):
- (b) Prove that a period-2 orbit exists.
- (c) Can a period-3 orbit exist? Prove your answer.

(d)	List all	periods	that	must	exist,	giving	a	proof	of you	r answer.	[Hint:	check	the	obvious	before
	vou get	fancy]													

BONUS: Assuming that f is linear in each of the three intervals, prove that if a period-4 orbit exists, it must enter all three intervals.

4. [6 points]

(a) Find the box-counting dimension of the curve (a subset of \mathbb{R}^2) formed by the limiting process sketched below: for each straight line segment remove the middle third and replace it by the other three sides of the square. [Hint: describe your 'boxes'. To avoid colliding boxes you may rotate them to cover without collisions]

((b)	Could	there	be a	subset	of \mathbb{R}	with	this same	box-counting	dimension?	Explain.

BONUS: Describe an alternative construction whose limit gives this same fractal

5. [8 points] Consider the following map acting on points (x, y) in the unit square $[0, 1]^2$:

$$B(x,y) = \left\{ \begin{array}{ll} \left(\frac{x}{4}, \ 2y \pmod{1}\right), & \text{if } y < 1/2, \\ \left(\frac{x+3}{4}, 2y \pmod{1}\right), & \text{otherwise} \end{array} \right.$$

(a) What is the complete set of Lyapunov exponents (for almost all initial conditions) for this map?

(b) Orbits of this map are attracted to a limiting set in \mathbb{R}^2 . Is (4/5, 1/4) in this set, and why?

(c)	What	is	the	box-counting	dimension	of	this	attractor	in	\mathbb{R}^2 ?

(d) Let
$$(x_0, y_0) \to (x_1, y_1) \to \dots$$
 be any orbit with (x_0, y_0) in the unit square. Give a tight upper bound on the distance of (x_n, y_n) from the attractor.

6. [11 points] Random short-answer questions

- (a) What can you deduce about the ODE system $\dot{\mathbf{x}} = A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^4$ given that the matrix A has eigenvalues -3, -1, 0, and 0?
- (b) Give the mathematical definition of an equilibrium point \mathbf{v} of a flow being *stable*.

(c)	What	is t	he	measure	of	the	set	of	points	in	[0, 1]	whose	decimal	expansion	never	uses	the	digit
	"0" ?																	

Prove if this set is finite, countably infinite, or uncountably infinite. (You may use known properties of the set [0,1].)

(d) What is the Lyapunov exponent of almost all bounded orbits of G(x) = 4x(1-x)? Explain why.

(e) Prove that there exists an orbit of G(x)=4x(1-x) that is dense in [0,1].