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1 Introduction

The classic elastic pendulum is a mechanical system consisting of a mass hanging from a
spring (Figure 1a). This single spring-pendulum system has been well-studied previously,
and current literature shows that chaotic motion is possible given certain initial conditions,
even without damping and when restricted to two dimensions ([2], [3], [4], [5], [6]).

In our investigation, we used Hamiltonian dynamics to model two different spring-pendulum
systems in MATLAB. First, we confirmed that chaotic motion is possible in the classic single
spring-pendulum system in two dimensions and without damping. Next, we modified the
system by attaching the mass to two springs (Figure 1b) and tested to see how the dynamics
change with the addition of this second spring to the system.

Some of the characteristics of chaotic motion include an unbounded, aperiodic orbit, sen-
sitive dependence, and positive Lyapunov exponent ([1]). Therefore, in order to determine
whether chaotic motion is possible in each our spring-pendulum systems, we tested for sen-
sitive dependence via a log separation plot, calculated the Lyapunov exponents for various
initial conditions, and created potential energy contour maps in order to better visualize the
stability of various trajectories.

2 System Design

The single spring-pendulum system consists of a fixed mass hanging from a spring pendulum
(Figure 1a). The double spring-pendulum system consists of a fixed mass hanging from two
springs of equivalent natural lengths and with equivalent spring constants (Figure 1b). For
simplicity, we assume that, in both systems, the springs can stretch but cannot bend and are
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(a) Single Spring-Pendulum System (b) Double Spring-Pendulum System

Figure 1: Schematic diagram of the two spring-pendulum systems.

of negligible mass and that the mass is free to move in two dimensions, i.e. has two degrees
of freedom. We also assume that there are no damping forces acting on either system. Our
system parameters were chosen semi-randomly based on convenience. Finally, in the double
spring-pendulum system, we set D < 2L in order to ensure that the the equilibrium point
on the y-axis is unstable (i.e. the springs always buckle).

3 Derivation of the Hamiltonian Equations of Motion

Note that since we worked in Cartesian coordinates, the equations for the momenta and
velocities could have been derived without the use of the Hamiltonian and instead simply
with force equations, alone.

3.1 Single Spring-Pendulum System

Let the mass m have position (x, y) (where x, y are functions of time) and be hanging from
a rigid, massless, undamped spring of natural length L and with spring constant k. Assume
the spring is attached to the point (0, D) above the ground. Let the acceleration due to
gravity be g. (See Figure 1a.)

The kinetic energy (T ) of the system is then given by:

T = m
2
· (velocity)2 = m

2
(ẋ2 + ẏ2)
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And the potential energy (V ) of the system is given by:

V = Vspring + Vgravity = k
2
(
√
x2 + (y −D)2 − L)2 +mgy

From this, we have that the Lagrangian L is given by:

L = T − V = m
2

(ẋ2 + ẏ2) − k
2
(
√
x2 + (y −D)2 − L)2 −mgy

The generalized momenta pi are then calculated to be:

px = ∂L
∂ẋ

= mẋ

py = ∂L
∂ẏ

= mẏ

Solving for ẋ and ẏ gives us:

ẋ = px
m

ẏ = py
m

Substituting in for ẋ and ẏ gives us that the Hamiltonian H is:

H = p2x
m

+
p2y
m

− m
2

((px
m

)2 + (py
m

)2) + k
2
(
√
x2 + (y −D)2 − L)2 +mgy

Therefore, the Hamiltonian equations of motion for the single spring-pendulum system are:

ẋ = ∂H
∂px

= px
m

ẏ = ∂H
∂py

= py
m

ṗx = −∂H
∂x

= −kx+ kLx(x2 + (y −D)2)−1/2

ṗy = −∂H
∂y

= −k(y −D) + kL(y −D)(x2 + (y −D)2)−1/2 −mg

The Jacobean J for the single spring-pendulum system is then determined to be:

J =


0 0 1

m
0

0 0 0 1
m

j1 j2 0 0
j3 j4 0 0


where

j1 = −k + kL(x2 + (y −D)2)−1/2 − kLx2(x2 + (y −D)2)−3/2

j2 = −kLx(y −D)(x2 + (y −D)2)−3/2

j3 = −kLx(y −D)(x2 + (y −D)2)−3/2

j4 = −k + kL(x2 + (y −D)2)−1/2 − kL(y −D)2(x2 + (y −D)2)−3/2
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3.2 Double Spring-Pendulum System

Let the mass m have position (x, y) (where x, y are functions of time) and be hanging from
two rigid, massless, undamped springs, both of natural length L and with spring constant
k. Assume one spring is attached to the point (0, D) and the other spring is attached to the
point (0, 0), where D < 2L. Let the acceleration due to gravity be g. (See Figure 1b.)

The kinetic energy (T ) of the system is then given by:

T = m
2

(ẋ2 + ẏ2)

And the potential energy (V ) of the system is given by:

V = k
2
(
√
x2 + y2 − L)2 + k

2
(
√
x2 + (y −D)2 − L)2 +mgy

From this, we have that the Lagrangian L is given by:

L = T − V = m
2

(ẋ2 + ẏ2) − k
2
(
√
x2 + y2 − L)2 − k

2
(
√
x2 + (y −D)2 − L)2 −mgy

The generalized momenta pi are then calculated to be:

px = ∂L
∂ẋ

= mẋ

py = ∂L
∂ẏ

= mẏ

Solving for ẋ and ẏ gives us:

ẋ = px
m

ẏ = py
m

Substituting in for ẋ and ẏ gives us that the Hamiltonian H is:

H = p2x
m

+
p2y
m

− m
2

((px
m

)2 + (py
m

)2) + k
2
(
√
x2 + y2 − L)2 + k

2
(
√
x2 + (y −D)2 − L)2 +mgy

Therefore, the Hamiltonian equations of motion for the double spring-pendulum system are:

ẋ = ∂H
∂px

= px
m

ẏ = ∂H
∂py

= py
m

ṗx = −∂H
∂x

= −2kx+ +kLx(x2 + y2)−1/2 + kLx(x2 + (y −D)2)−1/2

ṗy = −∂H
∂y

= −2ky +Dk + kLy(x2 + y2)−1/2 + +kL(y −D)(x2 + (y −D)2)−1/2 −mg

The Jacobean J for the double spring-pendulum system is then determined to be:

J =


0 0 1

m
0

0 0 0 1
m

j1 j2 0 0
j3 j4 0 0
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where

j1 = −2k+kL(x2+y2)−1/2−kx2L(x2+y2)−3/2+kL(x2+(y−D)2)−1/2−kx2L(x2+(y−D)2)−3/2

j2 = −kLxy(x2 + y2)−3/2 − kLx(y −D)(x2 + (y −D)2)−3/2

j3 = −kLxy(x2 + y2)−3/2 − kLx(y −D)(x2 + (y −D)2)−3/2

j4 = kL[− 2
L

+(x2+y2)−1/2−y2(x2+y2)−3/2+(x2+(y−D)2)−1/2−(y−D)2(x2+(y−D)2)−3/2]

4 Numerical Experiments

We used MATLAB’s ODE45 function to numerically solve the set of ODEs given by the
Hamiltonian equations of motion. In order to perform numerical analysis of our two spring-
pendulum systems, we have created three code files: LyapFind.m, Elastic Pend time1map.m,
and Double Spring time1map.m.

Elastic Pend time1map.m and Double Spring time1map.m are function files that are called
in LyapFind.m to calculate Lyapunov exponents using the Jacobean derivatives for the single
and double spring-pendulum systems, respectively. Our code file LyapFind.m performs the
following tasks for both the single spring and double spring systems:

• Performs a sensitive dependence test by creating a log plot of the separation of two
paths that begin a small distance ε apart in each Cartesian coordinate; measuring
the slope of the growth phase of these plots would result in a crude estimation of the
Lyapunov exponent at the given initial condition

• Determines Lyapunov exponents more accurately by the re-orthogonalizing and re-
peated averaging method using Jacobean derivatives; the tested initial conditions and
corresponding Lyapunov exponents are then written to a text file

• Creates an animation that plots the flow for a given set of initial conditions (plotted
in white) and for a point starting a small distance ε away in each Cartesian coordinate
(plotted in green) from these given initial conditions on a potential energy contour
map

• Creates a Lyapunov exponent color plot that displays the Lyapunov exponents corre-
sponding to each initial condition in an array of initial conditions tested

The program that we have created is highly interactive and allows the user to determine
which functions they want to use by simply changing flag values and initial conditions. The
flags determine which spring system to analyze as well as which operations (as described
above) to run. Our program also simultaneously parses through several different initial
conditions, which the user can specify prior to running the code.

Because of Liouville’s Theorem, which states that Hamiltonian flows in R2n are volume-
preserving (i.e. the sum of all of the Lyapunov exponents is 0) ([1]), we expect the four

5



(a) Single Spring-Pendulum System (b) Double Spring-Pendulum System

Figure 2: Lyapunov Exponent Color Plots. These color plots were generated from a set
of 36 initial conditions.

Lyapunov exponents for each initial condition to sum to 0, where one Lyapunov exponent
is positive, one is negative, and the remaining two are 0. Thus, we use the two Lyapunov
exponents closest to 0 as a measure of error and report the maximum Lyapunov exponent
as h1±(the absolute value of the larger of the two Lyapunov exponents closest to 0).

Also, note that for our sensitive dependence tests, we set ε = 1e− 8.

4.1 Single Spring-Pendulum System

We tested 36 different initial positions ranging from (0, 0) to (1.25, 2). Out of these 36,
we found that initial position (0.1, 2) had the largest maximum Lyapunov exponent, which,
using the Jacobean determinant method, was calculated to be 1.260641± 0.022734. Figure
2a shows that out of the 36 initial conditions tested, only a small portion of initial positions
had strongly positive Lyapunov exponents (the positions at which the spring was stretched a
large amount in the y-direction but only somewhat stretched in the x-direction). In general,
we found that the less the spring was stretched in the y-direction, the less positive the
maximum Lyapunov exponent was.

Figure 3 shows the potential energy contour map and log separation plot for the non-
chaotic orbit starting at initial position (1, 0). Using the Jacobean determinant method,
the maximum Lyapunov exponent was calculated to be 0.018695± 0.015789 (approximately
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(a) Potential Energy Contour Map for (1, 0) (b) Log Separation Plot for (1, 0)

Figure 3: Plots for a Non-Chaotic Orbit in the Single Spring-Pendulum System.
The initial position for this orbit was (1, 0). Using the Jacobean determinant method, the
maximum Lyapunov exponent was calculated to be 0.018695 ± 0.015789 (approximately
zero).

zero). The log separation plot (Figure 3b) shows essentially no growth phase, while the
potential energy contour map (Figure 3a) shows no separation of the orbits beginning at
initial positions (1, 0) and (1 + ε, 0 + ε). This orbit appears periodic, as we expect, and stays
within one potential energy contour (i.e. the orbit can never have more potential energy
than we give it initially). Therefore, since the Lyapunov exponent is approximately 0, there
is no growth phase in the log separation plot (i.e. no sensitive dependence), and the orbit
appears periodic, we conclude that the initial position (1, 0) has a regular, non-chaotic orbit.
Other orbits that had the same characteristics were also determined to be non-chaotic.

Figure 4 shows the potential energy contour map and log separation plot for the chaotic orbit
starting at initial position (0.3, 2). Using the Jacobean determinant method, the maximum
Lyapunov exponent was calculated to be 0.755571 ± 0.030399 (> 0). The log separation
plot (Figure 4b) shows a significant growth phase. However, the potential energy contour
map (Figure 4a) shows no separation of the orbits beginning at initial positions (0.3, 2) and
(0.3 + ε, 2 + ε), which is an unexpected result. In fact, none of the potential energy contour
map animations for the orbits that we determined to be chaotic showed separation of the
two orbits starting ε apart. It is possible that if we ran the animation for a longer period of
time that we would eventually see the two orbits separate. It may also be that because we
are limited by the numerical accuracy of of MATLAB that we do not see the separation that

7



(a) Potential Energy Contour Map for (0.3, 2) (b) Log Separation Plot for (0.3, 2)

Figure 4: Plots for a Chaotic Orbit in the Single Spring-Pendulum System. The
initial position for this orbit was (0.3, 2). Using the Jacobean determinant method, the
maximum Lyapunov exponent was calculated to be 0.755571 ± 0.030399. (a) The potential
energy contour map animation does not show separation of the two orbits starting ε apart.

we expect. Regardless, our animations do clearly demonstrate that these orbits with positive
maximum Lyapunov exponents are not periodic. The orbit does however stay within one
potential energy contour, which is consistent with the fact that the orbit can never exceed
the amount of potential energy that we originally put into it (conservation of energy). Thus,
we determined that orbits with positive Lyapunov exponents, significant growth phases in
their log separation plots (i.e. sensitive dependence), and aperiodic orbits (e.g. that of the
initial position (0.3, 2)) are chaotic.

4.2 Double Spring-Pendulum System

We tested 36 different initial positions ranging from (0, 0) to (1.25, 2). Out of these 36,
we found that initial position (0, 0.3) had the largest maximum Lyapunov exponent, which,
using the Jacobean determinant method, was calculated to be 2.774417± 0.022406. Figure
2b shows that out of the 36 initial conditions tested, only a small portion of initial positions
had strongly positive Lyapunov exponents (the positions at which the spring was stretched a
large amount in the y-direction but has little to no stretching in the x-direction). In general,
we found that the less stretched the spring was in the y-direction and the more stretched
the spring was in the x-direction, the less positive the maximum Lyapunov exponent was.
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(a) Potential Energy Contour Map for (1, 0.3) (b) Log Separation Plot for (1, 0.3)

Figure 5: Plots for a Non-Chaotic Orbit in the Double Spring-Pendulum System.
The initial position for this orbit was (1, 0.3). Using the Jacobean determinant method,
the maximum Lyapunov exponent was calculated to be 0.027172± 0.021341 (approximately
zero).

Figure 5 shows the potential energy contour map and log separation plot for the non-
chaotic orbit starting at initial position (1, 0.3). Using the Jacobean determinant method,
the maximum Lyapunov exponent was calculated to be 0.027172± 0.021341 (approximately
zero). The log separation plot (Figure 5b) shows essentially no growth phase, while the
potential energy contour map (Figure 5a) shows no separation of the orbits beginning at
initial positions (1, 0.3) and (1 + ε, 0.3 + ε). This orbit appears periodic, as we expect, and
stays within one potential energy contour (i.e. the orbit can never have more potential
energy than we give it initially). Therefore, since the Lyapunov exponent is approximately
0, there is no growth phase in the log separation plot (i.e. no sensitive dependence), and
the orbit appears periodic, we conclude that the initial position (1, 0.3) has a regular, non-
chaotic orbit. Other orbits that had the same characteristics were also determined to be
non-chaotic.

Figure 6 shows the potential energy contour map and log separation plot for the chaotic
orbits starting at initial position (0.1, 0.3) and (0, 0.3). Using the Jacobean determinant
method, the maximum Lyapunov exponent for the orbit of (0.1, 0.3) was calculated to be
0.880759±0.024596 (> 0) and the maximum Lyapunov exponent for the orbit of (0, 0.3) was
calculated to be 2.774417±0.022406 (> 0). The log separation plots for both initial positions
(Figure 6b,d) show a significant growth phase. However, the potential energy contour map

9



(a) Potential Energy Contour Map for (0.1, 0.3) (b) Log Separation Plot for (0.1, 0.3)

(c) Potential Energy Contour Map for (0, 0.3) (d) Log Separation Plot for (0, 0.3)

Figure 6: Plots for Chaotic Orbits in the Double Spring-Pendulum System. (a, b)
The initial position for this orbit was (0.1, 0.3). Using the Jacobean determinant method, the
maximum Lyapunov exponent was calculated to be 0.880759 ± 0.024596. (a) The potential
energy contour map animation does not show separation of the two orbits starting ε apart.
(c, d) The initial position for this orbit was (0, 0.3). Using the Jacobean determinant method,
the maximum Lyapunov exponent was calculated to be 2.774417±0.022406. (c) The potential
energy contour map animation clearly shows sensitive dependence.
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(Figure 6a) for the orbit of (0.1, 0.3) shows an aperiodic orbit with no sensitive dependence,
similarly to the results we have seen in the single spring case. The potential energy contour
map (Figure 6c) for the orbit of (0, 0.3) shows an aperiodic orbit with sensitive dependence.
Here, it may be important to note that (0, 0.3) was the initial position with the largest
maximum Lyapunov exponent out of the 36 initial positions we tested. This supports our
idea that some of the chaotic orbits may not appear to show sensitive dependence on the
potential energy contour map due to issues with numerical accuracy or the length of time
for which we plotted the orbit; it may simply be that the orbit for (0, 0.3) separated quickly
enough for the separation to be visible on the potential energy contour map and that other
chaotic orbits do not separate fast enough to be visible. Again, we did see that the orbits
stayed within one potential energy contour, which is consistent with the fact that the orbit
can have more potential energy than the amount that we originally put into it (conservation
of energy). In general, all orbits with positive Lyapunov exponents, significant growth phases
in their log separation plots (i.e. sensitive dependence), and aperiodic orbits were determined
to be chaotic.

5 Conclusions

In both spring-pendulum systems, we found both regular and chaotic orbits, which is con-
sistent with current literature on single spring-pendulum systems ([2],[4],[6]). We observed
that, in either system, giving the mass a lot of potential energy, i.e. stretching the spring a
lot, resulted in non-chaotic orbits. In general, the initial positions with chaotic orbits (i.e.
strongly positive Lyapunov exponents) were nearby the equilibrium position of the spring,
where the length of the spring was close to the natural length.

The main issue that we ran into in our experiments was that most of the orbits that we
determined were chaotic based on their log separation plots and maximum Lyapunov ex-
ponents did not show sensitive dependence when their orbits were plotted on the potential
energy contour maps. However, we strongly suspect that this discrepancy could be resolved
by either running the plots of the orbits for a larger number of iterations or increasing the
numerical accuracy of MATLAB’s ODE45 solver, of which we have adjusted the tolerance to
1e-10 to accommodate our ε value of 1e-8 (the default tolerance level of the ODE45 function
is 1e-6).

6 Future Directions

Based on our results, the logical next step would be to address the lack of observable sensitive
dependence of chaotic orbits when plotted on the potential energy contour maps. In order
to resolve this issue, we would need to increase the numerical accuracy of the ODE45 solver.

Another next step would be to improve the resolution of our Lyapunov exponent color plot

11



by calculating the Lyapunov exponents for more initial conditions and over a larger range of
initial positions. In order to accomplish this, we would also need to improve the efficiency of
the part of our code that uses the Jacobean determinant method to find Lyapunov exponents.
Currently, just running this part of the code for 36 initial conditions takes over an hour;
therefore, making a higher resolution color plot would require a much smaller run time.
Having a higher resolution Lyapunov exponent color plot may also help reveal if there exists
some more concrete relationship between initial position, potential energy, and Lyapunov
exponent value.

Some other interesting modifications to our system would be to see how damping changes
the dynamics or to change our parameter values to either match real-life data or those used
in current literature. With respect to the latter modification, it would be helpful to see if
we could use our program to match the Lyapunov values reported in current literature. For
example, Gonzalez, et al, reported that after non-dimensionalizing the parameters with the
relation c = 1 − mg

kl
, the trajectory with total energy 0.04875 had a maximum Lyapunov

exponent converging to 0.037, and that this value was a sufficient indicator of chaos ([2]).
Matching these values would help show that our calculated Lyapunov exponents are indeed
reliable.

We could also try looking at Poincare sections as the majority of the other sources use
this method to determine chaotic trajectories ([2], [3], [5], [6]). Finally, we could explore
the dynamics of our two spring-pendulum systems in three dimensions to see what other
behavior is possible.
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