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The Lotka-Volterra equations are a pair of coupled first-order ODEs that 

are used to describe the evolution of two elements under some mutual 

interaction pattern. This flexibility allows for a multitude of real-life 

applications in ecology (predator-prey behaviors), chemistry (reaction 

between two chemical species) and even economics (interacting 

industrial sectors). The interpretation of these equations that lends 

itself to the most intuitive understanding is the original one, i.e. the 

ecological understanding. In the initial (canonical) form, these 

equations can be written as: {

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 𝛾)

    with 𝛼 an intrinsic 

growth rate for the prey species 𝑥, 𝛽 an interaction term for the effect 

of predation on 𝑥, 𝛿 an interaction term for 𝑦 and 𝛾 an intrinsic death 

rate for 𝑦. One assumption for this as a biological model is: 𝑦 has no 

intrinsic growth rate, so predators only increase by consuming preys 

and decay otherwise.  

This is enough to define a dynamical system (flow) that one can 

formally study using flow dynamics concepts: 

Equilibria: two equilibria at (0,0) (a saddle point) and (
𝛾

𝛿
,
𝛼

𝛽
) (yields 

pure imaginary eigenvalues). To determine the stability of this second 

point (which suggests periodic orbits), we need to find a Lyapunov 

function that is conserved and strictly positive outside of that 

equilibrium. 𝐸 = 𝛿𝑥 + 𝛽𝑦 − 𝛾 ln 𝑥 − 𝛼 ln 𝑦 (up to a constant 𝐾) 

satisfies these conditions as 𝐸̇ = 0 (by construction), and accepts a 



global minimum at that equilibrium, which means 𝐾 can be chosen so 

that 𝐸 is strictly bigger than 0 away from that point.  

Individual time plots of 𝑥(𝑡) and 𝑦(𝑡) show that solutions for these are 

bounded and periodic, which indicates closed contour curves. 

For the specific parameter values 𝛼 = 0.3; 𝛽 = 0.2; 𝛿 = 0.4; 𝛾 = 0.5 

and initial condition (𝑥0, 𝑦0) = (3,1): 

 

 

As expected, we obtain closed periodic curves around the equilibrium 

point(1.25, 1.5). The pattern of the time plots can be understood as 

the biological phenomenon of prey growth until a certain maximal 

capacity is reached (which coincides with the predators’ minimum 

population), and then their gradual hunting down by predators. The 

latter peaks again, and then decreases due to extremal absence of 

preys; and the cycle goes on after that. 

In addition to this canonical two-species model, there is a similar 

system of equations set up for three interacting species. The interaction 

follows a directed food chain, with a prey 𝑥, an intermediary predator 

𝑦 and an ‘apex’ predator 𝑧. The system is the following: 



 System: 

𝑑𝑥

𝑑𝑡
= 𝑥(𝛼 − 𝛽𝑦)

𝑑𝑦

𝑑𝑡
= 𝑦(𝛿𝑥 − 𝜀𝑧 − 𝛾)

𝑑𝑧

𝑑𝑡
= 𝑧(𝜁𝑦 − 𝜂) }

 
 

 
 

  

 α: represents the natural growth rate of in the absence of predators 

 β: represents the effect of predation on x 

 γ: represents the natural death rate of y 

 δ: represents the efficiency rate of y in the presence of x 

 ε: represents the effect of predation on species y by species z 

 ζ: represents the natural death rate of the predator z in the absence of prey 

 η: represents the efficiency of the predator z in the presence of prey y 

In this food chain, the apex predator’s population only depends on its 

intrinsic death rate (the model assumptions) and on the population of 

𝑦. Interestingly also, the dynamics of the system yield the same 

equilibria as for the 2d model: (0,0,0) and (
𝛾

𝛿
,
𝛼

𝛽
, 0) on the x-y plane 

(without any z-contribution). This hints at a behavior of x-y variations 

along parallel horizontal (𝑧 = 𝑐) contours, as locally z doesn’t causally 

determine the mutual x-y behavior. When graphed: 

 



This data also shows a clear correlative trend between 𝑥 and 𝑧 in 

addition to rapid rise-fall cycles in 𝑦. This is due to specific parameter 

values that lead to 𝑦 varying just enough to guarantee that more 𝑥 

transitively translates into more 𝑧 without any intermediary nuances 

due to 𝑦.  

In bio-mathematics, many-species models are studied often for 

dynamical properties. One such paper [ Hastings, Alan, and Thomas Powell. 

"Chaos in a Three-Species Food Chain."] looks at a variation on this Lotka-

Volterra model that yields a more interesting phase space, with 

ultimately chaotic properties and the possibility for Lyapunov 

exponents investigations. While n-species models (with n≥3) include 

the possibility of chaoticity, the two-species model has an a priori 

determined, non-chaotic result in general. Due to the Poincaré-

Bendixson theorem, bounded trajectories for autonomous systems of 

ODEs (basically our 2d model) can only yield as an attractor: a fixed 

point, a periodic orbit or a limit cycle. 

Nevertheless, the 2-species model still offers interesting population 

behaviors (in spite of the biological idealizations inherent to the 

assumptions in the model). For that reason, we have thought of 

investigating variations in the fundamental equations, interpreted as 

novel ways for the predation to happen. In particular, we looked at 

models of overconsumption by a few predators, which translates into 

𝑦 terms being turned into other monotonic functions of 𝑦 such as a 

monomial 𝑦𝑛 (explicitly for our case 𝑛 = 3) and an exponential 𝑒𝑦. 

With these functions, compared to the canonical model, the same 

variation 𝑥′(𝑡) and 𝑦′(𝑡) is achieved with a lower number in 𝑦.  

 

 



These modifications yield similar results in terms of the dynamics: 

 Monomial  Exponential 

Equilibria 
(0,0) and (

𝛾

𝛿
, √

𝛼

𝛽

3
) (

𝛾

𝛿
, ln

𝛼

𝛽
) 

Stability (0,0): saddle point 

(
𝛾

𝛿
, √

𝛼

𝛽

3
): purely imaginary 

eigenvalues  

Purely imaginary eigenvalues 

Lyapunov  
function  

𝐸 = 𝐾 + 𝛿𝑥 + 𝛽𝑦 − 𝛾 ln 𝑥 +
𝛼

2
𝑦−2 𝐸 = 𝐾 + 𝛿𝑥 + 𝛽𝑦 − 𝛾 ln 𝑥 + 𝛼𝑒

−𝑦 

 

Both of these Lyapunov functions satisfy 𝐸̇ = 0 along contours and 

𝐸(𝑥, 𝑦) being strictly positive outside of its minimum value at the 

equilibrium point. 

The existence of these contours leads to closed periodic orbits:  

 

 

 

 



 

 

 

 

 

On numerical accuracy: 

“ode45” was used for all of the 𝑥(𝑡) and 𝑦(𝑡) computations, in solving the ODEs. A fixed parameter of 

relative error 10−5 was used, although 10−3 was enough to yield smooth and non-interrupted solution 

curves.  

 

Appendix on MATLAB codes: 

For the system solver: 

                              
%F = @(t, y) [ y(1)*(0.3-0.2*y(2)); y(2) *(0.4*y(1)-0.5)] 
%F = @(t, y) [ y(1)*(0.3-0.2*y(2)^3); y(2)^3 *(0.4*y(1)-0.5)]; 
%F = @(t, y) [ y(1)*(0.3-0.2*exp(y(2))); exp(y(2)) *(0.4*y(1)-0.5)]; 

  
yo = [3;1];                              % IC for u and v 
[ts, ys]  = ode45(F, [0 50], yo,odeset('reltol',1e-5)); % numerically solve 

in t domain [0,50] 
figure; 
plot(ts,ys(:,1)) 

Phase space for monomial form Phase space for exponential form. This plot presents the 

problematic occasional trajectories that necessarily go 

into negative 𝑦 regions. Maintaining this model would 

then require using a strict ceiling to possible “energy” 

values E(x,y) in order to have plausible regions 



hold on 
plot(ts,ys(:,2)) 
xlabel('Time') 
xlabel('Time interval [0,50]') 
ylabel('Species population x(t), y(t)') 
title('Initial conditions (x(0),y(0))=(3,1)') 
legend('x(t)','y(t)') 

 

 

For the 3-species plot: 

function my_phase() 
[~,X] = ode45(@gg,[0 5], [5 2 1]); 
u = X(:,1); 
w = X(:,2); 
v = X(:,3); 
plot3(u,w,v) 
xlabel('x') 
ylabel('y') 
zlabel('z') 
grid 
title('Single Trajectory for IC (5,2,1)') 
size(u) 
tt=linspace(0,5,4013); 
figure; 
plot(tt,u) 
title('x') 
figure; 
plot(tt,w) 
title('y') 
figure; 
plot(tt,v) 
title('z') 
end 

  
function dX = gg(t, y) 
dX = zeros(3,1); 
u  = y(1); 
w  = y(2); 
z  = y(3); 
a = 5; b = 2; c = 0.3; d = 0.1; e = 0.2; f = 0.2; g = 2; 
dX = [y(1)*(a-b*y(2)); y(2)*(d*y(1)-e*y(3)-c); y(3)*(g*y(2)-f)]; 
end 

 

 

 

 

 

 

 


